Strategies in Trauma and Limb Reconstruction

Register      Login

VOLUME 15 , ISSUE 3 ( September-December, 2020 ) > List of Articles

Original Article

Biomechanical Analysis of the Behaviour at the Metaphyseal–Diaphyseal Junction of Complex Tibial Plateau Fractures Using Two Circular Fixator Configurations

Gracielle S Cardoso, Renato Amorim, Francisco M Penha, Françoá J Horn, Carlos RM Roesler, Jefferson LB Marques

Citation Information : Cardoso GS, Amorim R, Penha FM, Horn FJ, Roesler CR, Marques JL. Biomechanical Analysis of the Behaviour at the Metaphyseal–Diaphyseal Junction of Complex Tibial Plateau Fractures Using Two Circular Fixator Configurations. 2020; 15 (3):138-145.

DOI: 10.5005/jp-journals-10080-1507

License: CC BY-NC-SA 4.0

Published Online: 01-12-2020

Copyright Statement:  Copyright © 2020; The Author(s).


Abstract

Background: High-energy tibial plateau fractures are challenges in treatment with controversy over operative stabilisation, especially for fractures with metaphyseal–diaphyseal dissociation. Treatment with percutaneous or minimally invasive direct reduction techniques, usually associated with circular external fixation, has generated interest although there is no consensus regarding the type of external fixation to be used. Aim: This study aims to compare the two hybrid circular external fixation mountings used to treat the high-energy tibial plateau fractures. Methods: Two different groups of hybrid circular external fixation frame mountings were assembled using composite tibiae with proximal metaphyseal osteotomies simulating tibial plateau fractures with metaphyseal–diaphyseal dissociation. The standard all-wire frame mounting was assembled, and the comparison frame mounting had the distal K-wires replaced with half-pins. Both groups were tested through cyclic loading between 300 and 1000 N for 10,000 cycles. Interfragmentary linear and rotational displacements were analysed. Results: The standard frame mounting behaved similarly to a classic Ilizarov frame, allowing greater axial movement (mean, 3.76 ± 0.26 mm in the standard group and 3.02 ± 0.23 mm in the test group) and smaller mediolateral displacement compared with the test frame (mean, 0.17 ± 0.16 mm compared to 0.56 ± 0.12 mm). The test frame behaved more similarly to a linear external fixator and provided greater axial stability, similar anteroposterior displacement, and lower mediolateral stability. Despite these differences, in both groups the axial displacement was greater than the prejudicial nonaxial movements. Conclusion: Increasing the number of half-pins and decreasing the number of K-wires in hybrid circular external fixation generate frames that tend to behave more similarly to the linear external fixators.


HTML PDF Share
  1. Higgins TF, Klatt J, Bachus KN. Biomechanical analysis of bicondylar tibial plateau fixation: how does lateral locking plate fixation compare to dual plate fixation? J Orthop Trauma 2007;21(5):301–306. DOI: 10.1097/BOT.0b013e3180500359. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17485994.
  2. Zeltser DW, Leopold SS. Classifications in brief: Schatzker classification of tibial plateau fractures. Clin Orthop Relat Res 2013;471(2):371–374. DOI: 10.1007/s11999-012-2451-z.
  3. El Barbary H, Abdel Ghani H, Misbah H, et al. Complex tibial plateau fractures treated with Ilizarov external fixator with or without minimal internal fixation. Int Orthop 2005;29(3):182–5. DOI: 10.1007/s00264-005-0638-6.
  4. Catagni M, Ottaviani G, Maggioni M. Treatment strategies for complex fractures of the tibial plateau with external circular fixation and limited internal fixation. J Trauma 2007;63(5):1043–53. DOI: 10.1097/ta.0b013e3181238d88.
  5. Ali AM. Outcomes of open bicondylar tibial plateau fractures treated with Ilizarov external fixator with or without minimal internal fixation. Eur J Orthop Surg Traumatol 2013;23(3):349–55. DOI: 10.1007/s00590-012-0989-9.
  6. Wu CC, Tai CL. Plating treatment for tibial plateau fractures: a biomechanical comparison of buttress and tension band positions. Arch Orthop Trauma Surg 2007;127(1):19–24. DOI: 10.1007/s00402-006-0192-8.
  7. Zura RD, Browne JA, Black MD, et al. Current management of high-energy tibial plateau fractures. Curr Orthop 2007;21(3):229–35. DOI: 10.1016/j.cuor.2007.02.007.
  8. Ali AM, Saleh M, Bolongaro S, et al. The strength of different fixation techniques for bicondylar tibial plateau fractures – a biomechanical study. Clin Biomech 2003;18(9):864–70. DOI: 10.1016/s0268-0033(03)00149-9.
  9. Ariffin HM, Mahdi NM, Rhani SA, et al. Modified hybrid fixator for high-energy Schatzker V and VI tibial plateau fractures. Strateg Trauma Limb Reconstr 2011;6(1):21–6. DOI: 10.1007/s11751-011-0105-4.
  10. Ramos T, Ekholm C, Eriksson BI, et al. The Ilizarov external fixator: a useful alternative for the treatment of proximal tibial fractures. A prospective observational study of 30 consecutive patients. BMC Musculoskelet Disord 2013;14(1):11. DOI: 10.1186/1471-2474-14-11.
  11. McKee MD, Pirani S, Stephen DJG. Open reduction and internal fixation compared with circular fixator application for bicondylar tibial plateau fractures: results of a multicenter, prospective, randomized clinical trial. J Bone Joint Surg 2006;88(12):2613–23. DOI: 10.2106/jbjs.e.0141. Available at: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed7&NEWS=N&AN=2006608279.
  12. Gessmann J, Citak M, Jettkant B, et al. The influence of a weight-bearing platform on the mechanical behavior of two Ilizarov ring fixators: tensioned wires vs. half-pins. J Orthop Surg Res 2011;6:61. DOI: 10.1186/1749-799X-6-61. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3264501&tool=pmcentrez&rendertype=abstract.
  13. Henderson DJ, Rushbrook JL, Stewart TD, et al. What are the biomechanical effects of half-pin and fine-wire configurations on fracture site movement in circular frames? Clin Orthop Relat Res 2016;474(4):1041–9. DOI: 10.1007/s11999-015-4652-8.
  14. Pugh KJ, Wolinsky PR, Dawson JM, et al. The biomechanics of hybrid external fixation. J Orthop Trauma 1999;13(1):20–6. DOI: 10.1097/00005131-199901000-00006.
  15. Yilmaz E, Belhan O, Karakurt L, et al. Mechanical performance of hybrid Ilizarov external fixator in comparison with Ilizarov circular external fixator. Clin Biomech 2003;18(6):518–22. DOI: 10.1016/s0268-0033(03)00073-1.
  16. Yang L, Nayagam S, Saleh M. Stiffness characteristics and inter-fragmentary displacements with different hybrid external fixators. Clin Biomech 2003;18(2):166–72. DOI: 10.1016/S0268-0033(02)00175-4.
  17. Ali AM, Yang L, Hashmi M, et al. Bicondylar tibial plateau fractures managed with the Sheffield Hybrid Fixator. Biomechanical study and operative technique. Injury 2001;32(Suppl. 4):SD86–91. DOI: 10.1016/s0020-1383(01)00165-6.
  18. Dendrinos GK, Kontos S, Katsenis D, et al. Treatment of high-energy tibial plateau fractures by the Ilizarov circular fixator. J Bone Joint Surg Br 1996;78(5):710–7. DOI: 10.1302/0301-620X.78B5.0780710. Available at: http://www.mjdrdypu.org/text.asp?2013/6/1/33/108637.
  19. Aronson J, Harp JH. Mechanical considerations in using tensioned wires in a transosseous external fixation system. Clin Orthop Relat Res 1992;280:23–9. DOI: 10.1097/00003086-199207000-00005. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1611749.
  20. Calhoun JH, Li F, Ledbetter BR, et al. Biomechanics of the Ilizarov fixator for fracture fixation. Clin Orthop Relat Res 1992;280:15–22. DOI: 10.1097/00003086-199207000-00004. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1611735.
  21. Fleming B, Paley D, Kristiansen T, et al. A biomechanical analysis of the Ilizarov external fixator. Clin Orthop Relat Res 1989;241:95–105. DOI: 10.1097/00003086-198904000-00012. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2924484.
  22. Podolsky A, Chao EY. Mechanical performance of Ilizarov circular external fixators in comparison with other external fixators. Clin Orthop Relat Res 1993;293:61–70. DOI: 10.1097/00003086-199308000-00009. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8339510.
  23. Khalily C, Voor MJ, Seligson D. Fracture site motion with Ilizarov and “hybrid” external fixation. J Orthop Trauma 1998;12(1):21–6. DOI: 10.1097/00005131-199801000-00004. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9447515.
  24. Claes L, Heigele CA, Neidlinger-Wilke C, et al. Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res 1998;355S:S132–47. DOI: 10.1097/00003086-199810001-00015. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9917634.
  25. Goodship AE, Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures. J Bone Joint Surg Br 1985;67:650–5. DOI: 10.1302/0301-620X.67B4.4030869.
  26. Augat P, Margevicius K, Simon J, et al. Local tissue properties in bone healing: influence of size and stability of the osteotomy gap. J Orthop Res 1998;16(4):475–81. DOI: 10.1002/jor.1100160413.
  27. Augat P, Burger J, Schorlemmer S, et al. Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res 2003;21(6):1011–7. DOI: 10.1016/S0736-0266(03)00098-6.
  28. Baran O, Havitcioglu H, Tatari H, et al. The stiffness characteristics of hybrid Ilizarov fixators. J Biomech 2008;41(14):2960–3. DOI: 10.1016/j.jbiomech.2008.07.030.
  29. Duda GN, Kassi JP, Hoffmann JE, et al. Mechanical behavior of Ilizarov ring fixators. Effect of frame parameters on stiffness and consequences for clinical use. Unfallchirurg 2000;103(10):839–45. DOI: 10.1007/s001130050630.
  30. Lenarz C, Bledsoe G, Watson JT. Circular external fixation frames with divergent half pins: A pilot biomechanical study. Clin Orthop Relat Res. 2008;466(12):2933–9. DOI: 10.1007/s11999-008-0492-0.
  31. Khurana A, Byrne C, Evans S, et al. Comparison of transverse wires and half pins in Taylor Spatial Frame: a biomechanical study. J Orthop Surg Res 2010;5:23. DOI: 10.1186/1749-799X-5-23. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20346178.
  32. Duda GN, Sollmann M, Sporrer S, et al. Interfragmentary motion in tibial osteotomies stabilized with ring fixators. Clin Orthop Relat Res 2002;396:163–72. DOI: 10.1097/00003086-200203000-00025. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11859239.
  33. Hasler CC, Krieg AH. Current concepts of leg lengthening. J Child Orthop 2012;6(2):89–104. DOI: 10.1007/s11832-012-0391-5.
  34. Bronson DG, Samchukov ML, Birch JG, et al. Stability of external circular fixation: a multi-variable biomechanical analysis. Clin Biomech 1998;13(6):441–8. DOI: 10.1016/s0268-0033(98)00007-2.
  35. Davidson AW, Mullins M, Goodier D, et al. Ilizarov wire tensioning and holding methods: a biomechanical study. Injury 2003;34(2):151–4. DOI: 10.1016/s0020-1383(02)00045-1.
  36. Aquarius R, Van Kampen A, Verdonschot N. Rapid pre-tension loss in the Ilizarov external fixator: an in vitro study. Acta Orthop 2007;78(5):654–60. DOI: 10.1080/17453670710014356. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17966025.
  37. Kummer FJ. Biomechanics of the Ilizarov external fixator. Clin Orthop Relat Res 1992;280:11–4. DOI: 10.1097/00003086-199207000-00003. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1611730.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.