Strategies in Trauma and Limb Reconstruction

Register      Login

VOLUME 15 , ISSUE 2 ( May-August, 2020 ) > List of Articles

Original Article

Systematic Approach to the Management of Post-traumatic Segmental Diaphyseal Long Bone Defects: Treatment Algorithm and Comprehensive Classification System

Nando Ferreira, Yashwant S Tanwar

Citation Information : Ferreira N, Tanwar YS. Systematic Approach to the Management of Post-traumatic Segmental Diaphyseal Long Bone Defects: Treatment Algorithm and Comprehensive Classification System. 2020; 15 (2):106-116.

DOI: 10.5005/jp-journals-10080-1466

License: CC BY-NC-SA 4.0

Published Online: 03-03-2021

Copyright Statement:  Copyright © 2020; The Author(s).


Abstract

Background: Bone defects remain challenging to manage. The wide array of treatment options is a testament no single strategy works in every patient. This is more complex if consideration is given to the status of the host and the soft tissues. The choice of treatment should be based on specific patient requirements after taking all variables into account. Materials and Methods: We present a comprehensive classification system and treatment algorithm to assist with decision-making in management. All potential treatment modalities including amputation are discussed with their relevant pearls and pitfalls. Conclusion: The proposed classification system may potentially assists with communication, enable patient stratification for assigning the most appropriate treatment modality and guide reporting of treatment outcomes.


PDF Share
  1. Study to Prospectively Evaluate Reamed Intramedullary Nails in Patients with Tibial Fractures I, Bhandari M, Guyatt G, et al. Randomized trial of reamed and unreamed intramedullary nailing of tibial shaft fractures. J Bone Joint Surg Am 2008;90(12):2567–2578. DOI: 10.2106/JBJS.G.01694.
  2. Sanders DW, Bhandari M, Guyatt G, et al. Critical-sized defect in the tibia: is it critical? results from the SPRINT trial. J Orthop Trauma 2014. DOI: 10.1097/BOT.0000000000000194.
  3. Keating JF, Simpson AH, Robinson CM. The management of fractures with bone loss. J Bone Joint Surg Br 2005;87(2):142–150. DOI: 10.1302/0301-620X.87B2.15874. http://www.ncbi.nlm.nih.gov/pubmed/15736731.
  4. Gustilo RB, Anderson JT. Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: retrospective and prospective analyses. J Bone Joint Surg Am 1976;58(4):453–458. DOI: 10.2106/00004623-197658040-00004. http://www.ncbi.nlm.nih.gov/pubmed/773941.
  5. Paley D, Catagni MA, Argnani F, et al. Ilizarov treatment of tibial nonunions with bone loss. Clin Orthop Relat Res 1989;241:146–165. DOI: 10.1097/00003086-198904000-00017. http://www.ncbi.nlm.nih.gov/pubmed/2924458.
  6. Solomin L, Slongo T. Long bone defect classification: what it should be? J Bone Rep Recomm 2016;2(1-2):1–2. DOI: 10.4172/2469-6684.100016.
  7. McPherson EJ, Woodson C, Holtom P, et al. Periprosthetic total hip infection: outcomes using a staging system. Clin Orthop Relat Res 2002(403):8–15. DOI: 10.1097/00003086-200210000-00003.
  8. Cierny 3rd G, Mader JT, Penninck JJ. A clinical staging system for adult osteomyelitis. Clin Orthop Relat Res 2003(414):7–24. DOI: 10.1097/01.blo.0000088564.81746.62.
  9. Drago L, Romano D, De Vecchi E, et al. Bioactive glass BAG-S53P4 for the adjunctive treatment of chronic osteomyelitis of the long bones: an in vitro and prospective clinical study. BMC Infect Dis 2013;13:584. DOI: 10.1186/1471-2334-13-584.
  10. Romano CL, Logoluso N, Meani E, et al. A comparative study of the use of bioactive glass S53P4 and antibiotic-loaded calcium-based bone substitutes in the treatment of chronic osteomyelitis: a retrospective comparative study. Bone Joint J 2014;96-B(6):845–850. DOI: 10.1302/0301-620X.96B6.33014.
  11. Bowen TR, Widmaier JC. Host classification predicts infection after open fracture. Clin Orthop Relat Res 2005;433:205–211. DOI: 10.1097/01.blo.0000150345.51508.74.
  12. Hotchen AJ, McNally MA, Sendi P. The classification of long bone osteomyelitis: a systemic review of the literature. J Bone Joint Infect 2017;2(4):167–174. DOI: 10.7150/jbji.21050.
  13. Gottlieb LJ, Krieger LM. From the reconstructive ladder to the reconstructive elevator. Plast Reconstr Surg 1994;93(7):1503–1504. DOI: 10.1097/00006534-199406000-00027.
  14. Janis JE, Kwon RK, Attinger CE. The new reconstructive ladder: modifications to the traditional model. Plast Reconstr Surg 2011;127(Suppl 1):205S–212S. DOI: 10.1097/PRS.0b013e318201271c.
  15. Morykwas MJ, Simpson J, Punger K, et al. Vacuum-assisted closure: state of basic research and physiologic foundation. Plast Reconstr Surg 2006;117(7 Suppl):121S–126S. DOI: 10.1097/01.prs.0000225450.12593.12.
  16. Brem MH, Bail HJ, Biber R. Value of incisional negative pressure wound therapy in orthopaedic surgery. Int Wound J 2014;11(Suppl 1):3–5. DOI: 10.1111/iwj.12252.
  17. Costa ML, Achten J, Bruce J, et al. Effect of negative pressure wound therapy vs standard wound management on 12 month disability among adults with severe open fracture of the lower limb the wollf randomized clinical trial. J Am Med Assoc 2018;319(22):2280–2288. DOI: 10.1001/jama.2018.6452.
  18. Liu DSH, Sofiadellis F, Ashton M, et al. Early soft tissue coverage and negative pressure wound therapy optimises patient outcomes in lower limb trauma. Injury 2012;43(6):772–778. DOI: 10.1016/j.injury.2011.09.003.
  19. Temporary wound dressings. In: Eccles S, Handley B, Khan U, et al., ed. Standards for the Management of Open Fractures. Oxford University Press; 2020. pp. 31–40. DOI: 10.1093/med/9780198849360.003.0005.
  20. Yazar S, Lin CH, Wei FC. One-stage reconstruction of composite bone and soft-tissue defects in traumatic lower extremities. Plast Reconstr Surg 2004;114(6):1457–1466. DOI: 10.1097/01.PRS.0000138811.88807.65.
  21. Herscovici D, Sanders RW, Scaduto JM, et al. Vacuum-assisted wound closure (VAC therapy) for the management of patients with high-energy soft tissue injuries. J Orthop Trauma 2003;17(10):683–688. DOI: 10.1097/00005131-200311000-00004.
  22. Zimmerli W, Moser C. Pathogenesis and treatment concepts of orthopaedic biofilm infections. FEMS Immunol Med Microbiol 2012;65(2):158–168. DOI: 10.1111/j.1574-695X.2012.00938.x.
  23. Parrett BM, Matros E, Pribaz JJ, et al. Lower extremity trauma: trends in the management of soft-tissue reconstruction of open tibia-fibula fractures. Plast Reconstr Surg 2006;117(4):1315–1322. DOI: 10.1097/01.prs.0000204959.18136.36.
  24. Dedmond BT, Kortesis B, Punger K, et al. Subatmospheric pressure dressings in the temporary treatment of soft tissue injuries associated with type iii open tibial shaft fractures in children. J Pediatr Orthop 2006;26(6):728–732. DOI: 10.1097/01.bpo.0000242434.58316.ad.
  25. DeFranzo AJ, Argenta LC, Marks MW, et al. The use of vacuum-assisted closure therapy for the treatment of lower-extremity wounds with exposed bone. Plast Reconstr Surg 2001;108(5):1184–1191. DOI: 10.1097/00006534-200110000-00013.
  26. Dedmond BT, Kortesis B, Punger K, et al. The use of negative-pressure wound therapy (NPWT) in the temporary treatment of soft-tissue injuries associated with high-energy open tibial shaft fractures. J Orthop Trauma 2007;21(1):11–17. DOI: 10.1097/BOT.0b013e31802cbc54.
  27. Salih S, Mills E, McGregor-Riley J, et al. Transverse debridement and acute shortening followed by distraction histogenesis in the treatment of open tibial fractures with bone and soft tissue loss. Strateg Trauma Limb Reconstr 2018;13(3):129–135. DOI: 10.1007/s11751-018-0316-z.
  28. Tetsworth K, Paley D, Sen C, et al. Bone transport vs acute shortening for the management of infected tibial non-unions with bone defects. Injury 2017;48(10):2276–2284. DOI: 10.1016/j.injury.2017.07.018.
  29. Wen H, Zhu S, Li C, et al. Bone transport vs acute shortening for the management of infected tibial bone defects: a meta-analysis. BMC Musculoskelet Disord 2020;21(1):80. DOI: 10.1186/s12891-020-3114-y.
  30. Sigmund IK, Ferguson J, Govaert GAM, et al. Comparison of Ilizarov bifocal, acute shortening and Relengthening with bone transport in the treatment of infected, segmental defects of the tibia. J Clin Med 2020;9(2):279. DOI: 10.3390/jcm9020279.
  31. El-Rosasy MA. Acute shortening and re-lengthening in the management of bone and soft-tissue loss in complicated fractures of the tibia. J Bone Joint Surg Br 2007;89(1):80–88. DOI: 10.1302/0301-620X.89B1.17595.
  32. Ferreira N, Marais LC, Serfontein C. Two stage reconstruction of septic non-union of the humerus with the use of circular external fixation. Injury 2016;47(8):1713–1718. DOI: 10.1016/j.injury.2016.06.014.
  33. Mahaluxmivala J, Nadarajah R, Allen PW, et al. Ilizarov external fixator: acute shortening and lengthening vs bone transport in the management of tibial non-unions. Injury 2005;36(5):662–668. DOI: 10.1016/j.injury.2004.10.027.
  34. Masquelet AC, Begue T. The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am 2010;41(1):27–37. DOI: 10.1016/j.ocl.2009.07.011.
  35. Viateau V, Bensidhoum M, Guillemin G, et al. Use of the induced membrane technique for bone tissue engineering purposes: animal studies. Orthop Clin North Am 2010;41(1):49–56. DOI: 10.1016/j.ocl.2009.07.010.
  36. Viateau V, Guillemin G, Calando Y, et al. Induction of a barrier membrane to facilitate reconstruction of massive segmental diaphyseal bone defects: an ovine model. Vet Surg 2006;35(5):445–452. DOI: 10.1111/j.1532-950X.2006.00173.x.
  37. Cuthbert RJ, Jones E, McGonagle D, et al. The mascquelet technique induces the formation of a mesenchymal stem cell rich periosteum like membrane. Inj Extra 2012;43(10):81. DOI: 10.1016/j.injury.2012.07.223.
  38. Cuthbert RJ, Churchman SM, Tan HB, et al. Induced periosteum a complex cellular scaffold for the treatment of large bone defects. Bone 2013;57(2):484–492. DOI: 10.1016/j.bone.2013.08.009.
  39. Christou C, Oliver RA, Yu Y, et al. The Masquelet technique for membrane induction and the healing of ovine critical sized segmental defects. PLoS One 2014;9(12):e114122. DOI: 10.1371/journal.pone.0114122.
  40. Aho OM, Lehenkari P, Ristiniemi J, et al. The mechanism of action of induced membranes in bone repair. J Bone Joint Surg Am 2013;95(7):597–604. DOI: 10.2106/JBJS.L.00310.
  41. Masquelet AC, Fitoussi F, Begue T, et al. Reconstruction of the long bones by the induced membrane and spongy autograft. Ann Chir Plast Esthet 2000;45(3):346–353. http://www.ncbi.nlm.nih.gov/pubmed/10929461.
  42. Stafford PR, Norris BL. Reamer-irrigator-aspirator bone graft and bi Masquelet technique for segmental bone defect nonunions: a review of 25 cases. Injury 2010;41(Suppl 2):S72–S77. DOI: 10.1016/S0020-1383(10)70014-0.
  43. Apard T, Bigorre N, Cronier P, et al. Two-stage reconstruction of post-traumatic segmental tibia bone loss with nailing. Orthop Traumatol Surg Res 2010;96(5):549–553. DOI: 10.1016/j.otsr.2010. 02.010.
  44. Gunepin FX, Laine P, Nuzzaci F, et al. Use of the induced membrane technique for the management of chronic osteomyelitis of the humerus in an adolescent in a precarious environement for surgery. Orthop Proc 2008;90-B(Suppl II).
  45. Zwetyenga N, Catros S, Emparanza A, et al. Mandibular reconstruction using induced membranes with autologous cancellous bone graft and HA-βTCP: animal model study and preliminary results in patients. Int J Oral Maxillofac Surg 2009;38(12):1289–1297. DOI: 10.1016/j.ijom.2009.07.018.
  46. Roche O, Zabée L, Sirveaux F, et al. Treatment of septic nonunion of long bones: preliminary results of a two-stage procedure. Orthop Proc 2005;87-B(Suppl II).
  47. Morwood MP, Streufert BD, Bauer A, et al. Intramedullary nails yield superior results compared with plate fixation when using the Masquelet technique in the femur and tibia. J Orthop Trauma 2019;33(11):547–552. DOI: 10.1097/BOT.0000000000001579.
  48. Dilogo IH, Primaputra MRA, Pawitan JA, et al. Modified Masquelet technique using allogeneic umbilical cord-derived mesenchymal stem cells for infected non-union femoral shaft fracture with a 12 cM bone defect: a case report. Int J Surg Case Rep 2017;34:11–16. DOI: 10.1016/j.ijscr.2017.03.002.
  49. Gupta S, Malhotra A, Jindal R, et al. Role of beta tri-calcium phosphate-based composite ceramic as bone-graft expander in Masquelet’s-induced membrane technique. Indian J Orthop 2019;53(1):63–69. DOI: 10.4103/ortho.IJOrtho_240_17.
  50. Utomo DN, Hernugrahanto KD, Edward M, et al. Combination of bone marrow aspirate, cancellous bone allograft, and platelet-rich plasma as an alternative solution to critical-sized diaphyseal bone defect: a case series. Int J Surg Case Rep 2019;58:178–185. DOI: 10.1016/j.ijscr.2019.04.028.
  51. Bosemark P, Perdikouri C, Pelkonen M, et al. The Masquelet induced membrane technique with BMP and a synthetic scaffold can heal a rat femoral critical size defect. J Orthop Res 2015;33(4):488–495. DOI: 10.1002/jor.22815.
  52. Jones AL, Bucholz RW, Bosse MJ, et al. Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects: a randomized, controlled trial. J Bone Joint Surg Am 2006;88(7):1431–1441. DOI: 10.2106/00004623-200607000-00002.
  53. McCall TA, Brokaw DS, Jelen BA, et al. Treatment of large segmental bone defects with reamer-irrigator-aspirator bone graft: technique and case series. Orthop Clin North Am 2010;41(1):63–73.; table of contents 10.1016/j.ocl.2009.08.002.
  54. Huffman LK, Harris JG, Suk M. Using the bi-Masquelet technique and reamer-irrigator-aspirator for post-traumatic foot reconstruction. Foot Ankle Int 2009;30(9):895–899. DOI: 10.3113/FAI.2009.0895.
  55. Madison RD, Nowotarski PJ. The reamer-irrigator-aspirator in Nonunion surgery. Orthop Clin North Am 2019;50(3):297–304. DOI: 10.1016/j.ocl.2019.03.001.
  56. Dawson J, Kiner D, Gardner W, et al. The reamer-irrigator-aspirator as a device for harvesting bone graft compared with iliac crest bone graft: union rates and complications. J Orthop Trauma 2014;28(10):584–590. DOI: 10.1097/BOT.0000000000000086.
  57. Sagi HC, Young ML, Gerstenfeld L, et al. Qualitative and quantitative differences between bone graft obtained from the medullary canal (with a reamer/irrigator/aspirator) and the iliac crest of the same patient. J Bone Joint Surg Am 2012;94(23):2128–2135. DOI: 10.2106/JBJS.L.00159.
  58. Marchand LS, Rothberg DL, Kubiak EN, et al. Is this autograft worth it?: the blood loss and transfusion rates associated with reamer irrigator aspirator bone graft harvest. J Orthop Trauma 2017;31(4):205–209. DOI: 10.1097/BOT.0000000000000811.
  59. Dimitriou R, Mataliotakis GI, Angoules AG, et al. Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury 2011;42((Suppl 2):S3–S15. DOI: 10.1016/j.injury.2011.06.015.
  60. Karger C, Kishi T, Schneider L, et al. Treatment of posttraumatic bone defects by the induced membrane technique. Orthop Traumatol Surg Res 2012;98(1):97–102. DOI: 10.1016/j.otsr.2011.11.001.
  61. Morelli I, Drago L, George DA, et al. Masquelet technique: myth or reality? A systematic review and meta-analysis. Injury 2016;47(Suppl 6):S68–S76. DOI: 10.1016/S0020-1383(16)30842-7.
  62. Tong K, Zhong Z, Peng Y, et al. Masquelet technique vs Ilizarov bone transport for reconstruction of lower extremity bone defects following posttraumatic osteomyelitis. Injury 2017;48(7):1616–1622. DOI: 10.1016/j.injury.2017.03.042.
  63. Seebach E, Holschbach J, Buchta N, et al. Mesenchymal stromal cell implantation for stimulation of long bone healing aggravates staphylococcus aureus induced osteomyelitis. Acta Biomater 2015;21:165–177. DOI: 10.1016/j.actbio.2015.03.019.
  64. Harmon PH. A simplified surgical approach to the posterior tibia for bone-grafting and fibular transference. J Bone Joint Surg 1945;27(3):496–498.
  65. Foster MJ, O’Toole RV, Manson TT. Treatment of tibial nonunion with posterolateral bone grafting. Injury 2017;48(10):2242–2247. DOI: 10.1016/j.injury.2017.05.001.
  66. Ryzewicz M, Morgan SJ, Linford E, et al. Central bone grafting for nonunion of fractures of the tibia. J Bone Joint Surg Br 2009;91(4):522–529. DOI: 10.1302/0301-620X.91B4.21399.
  67. Lin CC, Chen CM, Chiu FY, et al. Staged protocol for the treatment of chronic tibial shaft osteomyelitis with Ilizarov's technique followed by the application of intramedullary Locked nail. Orthopedics 2012;35(12):e1769–e1774. DOI: 10.3928/01477447-20121120-23.
  68. Aktuglu K, Erol K, Vahabi A. Ilizarov bone transport and treatment of critical-sized tibial bone defects: a narrative review. J Orthop Traumatol 2019;20(1):22. DOI: 10.1186/s10195-019-0527-1.
  69. Catagni MA, Azzam W, Guerreschi F, et al. Trifocal vs bifocal bone transport in treatment of long segmental tibial bone defects. Bone Joint J 2019;101-B(2):162–169. DOI: 10.1302/0301-620X.101B2.BJJ-2018-0340.R2.
  70. Aurégan JC, Bégué T, Rigoulot G, et al. Success rate and risk factors of failure of the induced membrane technique in children: a systematic review. Injury 2016;47(Suppl 6):S62–S67. DOI: 10.1016/S0020-1383(16)30841-5.
  71. Yin P, Ji Q, Li T, et al. A systematic review and meta-analysis of Ilizarov methods in the treatment of infected nonunion of tibia and femur. PLoS One 2015;10(11):e0141973. DOI: 10.1371/journal.pone. 0141973.
  72. Olesen UK, Eckardt H, Bosemark P, et al. The Masquelet technique of induced membrane for healing of bone defects. A review of 8 cases. Injury 2015;46(Suppl 8):S44–S47. DOI: 10.1016/S0020-1383(15) 30054-1.
  73. Morris R, Hossain M, Evans A, et al. Induced membrane technique for treating tibial defects gives mixed results. Bone Joint J 2017;99-B(5):680–685. DOI: 10.1302/0301-620X.99B5.BJJ-2016- 0694.R2.
  74. Mühlhäusser J, Winkler J, Babst R, et al. Infected tibia defect fractures treated with the Masquelet technique. Med (Baltimore) 2017;96(20):e6948. DOI: 10.1097/MD.0000000000006948.
  75. Tetsworth K, Woloszyk A, Glatt V. 3D printed titanium cages combined with the Masquelet technique for the reconstruction of segmental femoral defects. OTA Int 2019;2(1):e016. DOI: 10.1097/OI9.0000000000000016.
  76. O’Malley NT, Kates SL. Advances on the Masquelet technique using a cage and nail construct. Arch Orthop Trauma Surg 2012;132(2):245–248. DOI: 10.1007/s00402-011-1417-z.
  77. Marais LC, Ferreira N. Bone transport through an induced membrane in the management of tibial bone defects resulting from chronic osteomyelitis. Strat Traum Limb Recon 2015;10(1):27–33. DOI: 10.1007/s11751-015-0221-7.
  78. de Boer HH, Wood MB, Hermans J. Reconstruction of large skeletal defects by vascularized fibula transfer—factors that influenced the outcome of union in 62 cases. Int Orthop 1990;14(2):121–128. DOI: 10.1007/BF00180115.
  79. Ling XF, Peng X. What is the price to pay for a free fibula flap? A systematic review of donor-site morbidity following free fibula flap surgery. Plast Reconstr Surg 2012;129(3):657–674. DOI: 10.1097/PRS.0b013e3182402d9a.
  80. Bi ZG, Han XG, Fu CJ, et al. Reconstruction of large limb bone defects with a double-barrel free vascularized fibular graft. Chin Med J (Engl) 2008;121(23):2424–2428. DOI: 10.1097/00029330-200812010-00012.
  81. Busse JW, Jacobs CL, Swiontkowski MF, et al. Complex limb salvage or early amputation for severe lower-limb injury: a meta-analysis of observational studies on behalf of the evidence-based orthopaedic trauma working Group. J Orthop Trauma 2007;21(1):70–76. DOI: 10.1097/BOT.0b013e31802cbc43.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.