Strategies in Trauma and Limb Reconstruction

Register      Login

VOLUME 6 , ISSUE 1 ( April, 2011 ) > List of Articles

Original Article

Direct and indirect loading of the Ilizarov external fixator: the effect on the interfragmentary movements and compressive loads

Jan Gessmann, Hinnerk Baecker, Birger Jettkant, Gert Muhr, Dominik Seybold

Keywords : Ilizarov, External fixator, Weight bearing, Indirect loading, Interfragmentary movement

Citation Information : Gessmann J, Baecker H, Jettkant B, Muhr G, Seybold D. Direct and indirect loading of the Ilizarov external fixator: the effect on the interfragmentary movements and compressive loads. 2011; 6 (1):27-31.

DOI: 10.1007/s11751-011-0103-6

License: CC BY-NC-SA 4.0

Published Online: 30-04-2011

Copyright Statement:  Copyright © 2011; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

The amount of weight bearing and the force transmission to the frame have an important influence on the results of treatment with an Ilizarov external fixator. The frame provides beneficial interfragmentary movements and compressive loads at the fracture site through elastic wires. Mobilisation can be achieved by applying a weight-bearing platform at the distal end of the fixator. The effect on the interfragmentary movements and the compressive loads in indirect and direct loading were analysed in this study using a composite tibia bone model. Displacement transducers were attached to measure the interfragmentary movements and to detect relative movements of the bone fragments and movements between the rings. The compressive loads in the osteotomy were measured with loading cells in the defect zone. The weight-bearing platform had a substantial effect on the biomechanical behaviour of the frame. It led to an indirect force transmission through the fixator with respect to the osteotomy, resulting in lower compressive loads, lower interfragmentary movements and higher mechanical stress on the frame.


PDF Share
  1. Aro HT, Chao EY (1993) Bone-healing patterns affected by loading, fracture fragment stability, fracture type, and fracture site compression. Clin Orthop Relat Res 293:8-17
  2. Yang L, Nayagam S, Saleh M (2003) Stiffness characteristics and inter-fragmentary displacements with different hybrid external fixators. Clin Biomech (Bristol, Avon) 18(2):166-172. doi: S0268003302001754[pii]
  3. Claes LE, Wilke HJ, Augat P, Rubenacker S, Margevicius KJ (1995) Effect of dynamization on gap healing of diaphyseal fractures under external fixation. Clin Biomech (Bristol, Avon) 10(5):227-234. doi:0268003395997998[pii]
  4. Goodship AE, Kenwright J (1985) The influence of induced micromovement upon the healing of experimental tibial fractures. J Bone Joint Surg Br 67(4):650-655
  5. Fleming B, Paley D, Kristiansen T, Pope M (1989) A biomechanical analysis of the ilizarov external fixator. Clin Orthop Relat Res 241:95-105
  6. Duda GN, Sporrer S, Sollmann M, Hoffmann JE, Kassi JP, Khodadadyan C, Raschke M (2003) Interfragmentary movements in the early phase of healing in distraction and correction osteotomies stabilized with ring fixators. Langenbecks Arch Surg 387(11-12):433-440. doi:10.1007/s00423-002-0340-8
  7. Paley D (1991) Biomechanics of the ilizarov external fixator. In: Bianchi Maiocchi A, Aronson J (eds) Operative principles of ilizarov, vol 1. Medi Surgical Video, Milano, pp 33-41
  8. Duda GN, Kassi JP, Hoffmann JE, Riedt R, Khodadadyan C, Raschke M (2000) Mechanical behavior of ilizarov ring fixators. Effect of frame parameters on stiffness and consequences for clinical use. Unfallchirurg 103(10):839-845
  9. Aronson J, Harp JH Jr (1992) Mechanical considerations in using tensioned wires in a transosseous external fixation system. Clin Orthop Relat Res 280:23-29
  10. Bronson DG, Samchukov ML, Birch JG, Browne RH, Ashman RB (1998) Stability of external circular fixation: A multi-variable biomechanical analysis. Clin Biomech (Bristol, Avon) 13(6): 441-448. doi:S0268003398000072[pii]
  11. Davidson AW, Mullins M, Goodier D, Barry M (2003) Ilizarov wire tensioning and holding methods: A biomechanical study. Injury 34(2):151-154. doi:S0020138302000451[pii]
  12. Mullins MM, Davidson AW, Goodier D, Barry M (2003) The biomechanics of wire fixation in the ilizarov system. Injury 34(2):155-157. doi:S0020138302002620[pii]
  13. Osei NA, Bradley BM, Culpan P, Mitchell JB, Barry M, Tanner KE (2006) Relationship between locking-bolt torque and load pre-tension in the ilizarov frame. Injury 37(10):941-945. doi: S0020-1383(06)00081-7[pii]10.1016/j.injury.2006.02.019
  14. Paley D, Lamm BM, Katsenis D, Bhave A, Herzenberg JE (2006) Treatment of malunion and nonunion at the site of an ankle fusion with the ilizarov apparatus Surgical technique. J Bone Joint Surg Am 88(Suppl 1 Pt 1):119-134. doi:88/1_suppl_1/119[pii]10.2106/JBJS.E.00862
  15. Ilizarov GA (1988) The principles of the ilizarov method. Bull Hosp Jt Dis Orthop Inst 48(1):1-11
  16. Shtarker H, David R, Stolero J, Grimberg B, Soudry M (1997) Treatment of open tibial fractures with primary suture and ilizarov fixation. Clin Orthop Relat Res 335:268-274
  17. McDonald MG, Burgess RC, Bolano LE, Nicholls PJ (1996) Ilizarov treatment of pilon fractures. Clin Orthop Relat Res 325:232-238
  18. Leung KS, Cheung WH, Yeung HY, Lee KM, Fung KP (2004) Effect of weightbearing on bone formation during distraction osteogenesis. Clin Orthop Relat Res 419:251-257. doi:00003086-200402000-00041[pii]
  19. Zhang G (2004) Geometric and material nonlinearity in tensioned wires of an external fixator. Clin Biomech (Bristol, Avon) 19(5):513-518. doi:10.1016/j.clinbiomech.2004.01.009S0268003304000233[pii]
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.