Strategies in Trauma and Limb Reconstruction

Register      Login

VOLUME 18 , ISSUE 1 ( January-April, 2023 ) > List of Articles


The Feasibility of Hinged Knee Arthrodiastasis for Cartilage Regeneration: A Systematic Review of the Literature

Beth Lineham, Bernard van Duren, Hemant Pandit

Keywords : Arthrodiastasis, Arthrodistraction, Cartilage, Knee joint distraction, Range of motion

Citation Information : Lineham B, van Duren B, Pandit H. The Feasibility of Hinged Knee Arthrodiastasis for Cartilage Regeneration: A Systematic Review of the Literature. 2023; 18 (1):37-43.

DOI: 10.5005/jp-journals-10080-1578

License: CC BY-NC-SA 4.0

Published Online: 31-05-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Introduction: Knee joint distraction (KJD) is a potential technique for cartilage regeneration in young patients with osteoarthritis of the knee. Static distraction has been utilised typically; however, a significant proportion of patients complain of knee stiffness post-distractor removal. The use of a hinged distractor may reduce the duration and severity of post-treatment knee stiffness by maintaining the range of motion during distraction. Furthermore, improved cartilage regeneration has been demonstrated in hinged ankle joint distraction as compared to static, and this may also be demonstrated at the knee. An evidence review was undertaken to inform further research and a potential change in practice. Aim: A systematic review of all primary research on hinged knee joint distraction for cartilage regeneration. Methods: An online systematic search of citation databases was conducted. Quality assessment and data extraction were undertaken by two separate researchers. Results: The literature search returned a small number of relevant studies, of which 7 were included. Three of these were animal studies, two cadaveric and two case series. The study quality was low or very low. There was significant methodological heterogeneity with difficulties encountered in the transfer of constructs from animal and cadaveric studies to humans. Issues faced included difficulties with hinge placement and pin site pain in motion. Conclusion: The feasibility of hinged knee joint distraction has yet to be proven. Any further research attempting to establish the benefits of hinged-over static knee distraction will have to take construct design considerations into account.

  1. Besselink NJ, Vincken KL, Bartels LW, et al. Cartilage quality (dGEMRIC Index) following knee joint distraction or high tibial osteotomy. Cartilage 2020;11(1):19–31. DOI: 10.1177/1947603518777578.
  2. Baboolal TG, Mastbergen SC, Jones E, et al. Synovial fluid hyaluronan mediates MSC attachment to cartilage, a potential novel mechanism contributing to cartilage repair in osteoarthritis using knee joint distraction. Ann Rheum Dis 2016;75(5):908–915. DOI: 10.1136/annrheumdis-2014-206847.
  3. Goh EL, Lou WCN, Chidambaram S, et al. The role of joint distraction in the treatment of knee osteoarthritis: A systematic review and quantitative analysis. Orthop Res Rev 2019;11:79–92. DOI: 10.2147/ORR.S211060.
  4. Jansen MP, Boymans TAEJ, Custers RJH, et al. Knee joint distraction as treatment for osteoarthritis results in clinical and structural benefit: A systematic review and meta-analysis of the limited number of studies and patients available. Cartilage 2021;13(1 Suppl):1113S–1123S. DOI: 10.1177/1947603520942945.
  5. Jansen MP, Mastbergen SC, van Heerwaarden RJ, et al. Knee joint distraction in regular care for treatment of knee osteoarthritis: A comparison with clinical trial data. PLoS One 2020;15(1):e0227975. DOI: 10.1371/journal.pone.0227975.
  6. Herrera-Perez M, Alrashidi Y, Galhoum AE, et al. Debridement and hinged motion distraction is superior to debridement alone in patients with ankle osteoarthritis: A prospective randomized controlled trial. Knee Surg Sports Traumatol Arthrosc 2019;27(9):2802–2812. DOI: 10.1007/s00167-018-5156-3.
  7. Bernstein M, Reidler J, Fragomen A, et al. Ankle distraction arthroplasty: Indications, technique, and outcomes. J Am Acad Orthop Surg 2017;25(2):89–99. DOI: 10.5435/JAAOS-D-14-00077.
  8. Saltzman CL, Hillis SL, Stolley MP, et al. Motion versus fixed distraction of the joint in the treatment of ankle osteoarthritis: A prospective randomized controlled trial. J Bone Joint Surg Am 2012;94(11):961–970. DOI: 10.2106/JBJS.K.00018.
  9. Sheehan FT. The finite helical axis of the knee joint (a non-invasive in vivo study using fast-PC MRI). J Biomech 2007;40(5):1038–1047. DOI: 10.1016/j.jbiomech.2006.04.006.
  10. Todo S, Kadoya Y, Moilanen T, et al. Anteroposterior and rotational movement of femur during knee flexion. Clin Orthop Relat Res 1999;(362):162–170. PMID: 10335295.
  11. Churchill DL, Incavo SJ, Johnson CC, et al. The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res 1998;(356):111–118. DOI: 10.1097/00003086-199811000-00016.
  12. Mochizuki T, Sato T, Blaha JD, et al. The clinical epicondylar axis is not the functional flexion axis of the human knee. J Orthop Sci 2014;19(3):451–456. DOI: 10.1007/s00776-014-0536-0.
  13. Katz MA, Beck TD, Silber JS, et al. Determining femoral rotational alignment in total knee arthroplasty: reliability of techniques. J Arthroplasty 2001;16(3):301–305. DOI: 10.1054/arth.2001.21456.
  14. Yin L, Chen K, Guo L, et al. Identifying the functional flexion-extension axis of the knee: An in-vivo kinematics study. PLoS One 2015;10(6):e0128877. DOI: 10.1371/journal.pone.0128877.
  15. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J Clin Epidemiol 2009;62(10):e1–e34. DOI: 10.1016/j.jclinepi.2009.06.006.
  16. Schünemann H, Brożek J, Guyatt G, et al. The GRADE Handbook; 2013.
  17. Hooijmans CR, Rovers MM, de Vries RB, et al. SYRCLE's risk of bias tool for animal studies. BMC Med Res Methodol 2014;14:43. DOI: 10.1186/1471-2288-14-43.
  18. Wilke J, Krause F, Niederer D, et al. Appraising the methodological quality of cadaveric studies: validation of the QUACS scale. J Anat 2015;226(5):440–446. DOI: 10.1111/joa.12292.
  19. Munn Z, Barker TH, Moola S, et al. Methodological quality of case series studies: An introduction to the JBI critical appraisal tool. JBI Evid Synth 2020;18(10):2127–2133. DOI: 10.11124/JBISRIR-D-19-00099.
  20. van Valburg AA, van Roermund PM, Marijnissen AC, et al. Joint distraction in treatment of osteoarthritis (II): Effects on cartilage in a canine model. Osteoarthritis Cartilage 2000;8(1):1–8. DOI: 10.1053/joca.1999.0263.
  21. Yanai T, Ishii T, Chang F, et al. Repair of large full-thickness articular cartilage defects in the rabbit: The effects of joint distraction and autologous bone-marrow-derived mesenchymal cell transplantation. J Bone Joint Surg Br 2005;87(5):721–729. DOI: 10.1302/0301-620X.87B5.15542.
  22. Kajiwara R, Ishida O, Kawasaki K, et al. Effective repair of a fresh osteochondral defect in the rabbit knee joint by articulated joint distraction following subchondral drilling. J Orthop Res 2005;23(4):909–915. DOI: 10.1016/j.orthres.2004.12.003.
  23. Kamei G, Ochi M, Okuhara A, et al. A new distraction arthroplasty device using magnetic force: A cadaveric study. Clin Biomech (Bristol, Avon) 2013;28(4):423–428. DOI: 10.1016/j.clinbiomech.2013.02.003.
  24. Struik T, Jaspers JEN, Besselink NJ, et al. Technical feasibility of personalized articulating knee joint distraction for treatment of tibiofemoral osteoarthritis. Clin Biomech (Bristol, Avon) 2017;49:40–47. DOI: 10.1016/j.clinbiomech.2017.08.002.
  25. Striuk T, Custers RJH, Besselink NJ, et al. Clinical feasibility of personalized articulating knee joint distraction. Austin J Orthop Rheumatol 2021;8(2):1104.
  26. Deie M, Ochi M, Adachi N, et al. A new articulated distraction arthroplasty device for treatment of the osteoarthritic knee joint: A preliminary report. Arthroscopy 2007;23(8):833–838. DOI: 10.1016/j.arthro.2007.02.014.
  27. van Valburg AA, van Roy HL, Lafeber FP, et al. Beneficial effects of intermittent fluid pressure of low physiological magnitude on cartilage and inflammation in osteoarthritis. An in vitro study. J Rheumatol 1998;25(3):515–520. PMID: 9517773.
  28. Wroble RR, Grood ES, Cummings JS. Changes in knee kinematics after application of an articulated external fixator in normal and posterior cruciate ligament-deficient knees. Arthroscopy 1997;13(1):73–77. DOI: 10.1016/s0749-8063(97)90212-7.
  29. Sommers MB, Fitzpatrick DC, Kahn KM, et al. Hinged external fixation of the knee: Intrinsic factors influencing passive joint motion. J Orthop Trauma 2004;18(3):163–169. DOI: 10.1097/00005131-200403000-00007.
  30. Fitzpatrick DC, Sommers MB, Kam BC, et al. Knee stability after articulated external fixation. Am J Sports Med 2005;33(11):1735–1741. DOI: 10.1177/0363546505275132.
  31. Gatti G. Conceptual design and implantation of an external fixator with improved mobility for knee rehabilitation. Comput Methods Biomech Biomed Engin 2017;20(8):884–892. DOI: 10.1080/10255842.2017.1307342.
  32. Richter M, Lobenhoffer P. Chronic posterior knee dislocation: Treatment with arthrolysis, posterior cruciate ligament reconstruction and hinged external fixation device. Injury 1998;29(7):546–549. DOI: 10.1016/s0020-1383(98)00095-3.
  33. Stannard JP, Sheils TM, McGwin G, et al. Use of a hinged external knee fixator after surgery for knee dislocation. Arthroscopy 2003;19(6):626–631. DOI: 10.1016/s0749-8063(03)00125-7.
  34. Zaffagnini S, Iacono F, Lo Presti M, et al. A new hinged dynamic distractor, for immediate mobilization after knee dislocations: Technical note. Arch Orthop Trauma Surg 2008;128(11):1233–1237. DOI: 10.1007/s00402-007-0515-4.
  35. Stannard JP, Nuelle CW, McGwin G, et al. Hinged external fixation in the treatment of knee dislocations: A prospective randomized study. J Bone Joint Surg Am 2014;96(3):184–191. DOI: 10.2106/JBJS.L.01603.
  36. Angelini FJ, Helito CP, Bonadio MB, et al. External fixator for treatment of the sub-acute and chronic multi-ligament-injured knee. Knee Surg Sports Traumatol Arthrosc 2015;23(10):3012–3018. DOI: 10.1007/s00167-015-3719-0.
  37. Damsin JP, Ghanem I. Treatment of severe flexion deformity of the knee in children and adolescents using the Ilizarov technique. J Bone Joint Surg Br 1996;78(1):140–144. PMID: 8898146.
  38. Kiely PD, McMahon C, Smith OP, et al. The treatment of flexion contracture of the knee using the Ilizarov technique in a child with haemophilia B. Haemophilia 2003;9(3):336–339. DOI: 10.1046/j.1365-2516.2003.00753.x.
  39. Kumar A, Logani V, Neogi DS, et al. IIlizarov external fixator for bilateral severe flexion deformity of the knee in haemophilia: Case report. Arch Orthop Trauma Surg 2010;130(5):621–625. DOI: 10.1007/s00402-009-0968-8.
  40. Balci HI, Kocaoglu M, Eralp L, et al. Knee flexion contracture in haemophilia: Treatment with circular external fixator. Haemophilia 2014;20(6):879–883. DOI: 10.1111/hae.12478.
  41. Zhai J, Weng X, Zhang B, et al. Management of knee flexion contracture in haemophilia with the Ilizarov technique. Knee 2019;26(1):201–206. DOI: 10.1016/j.knee.2018.08.006.
  42. Qin SH, Chen JW, Zheng XJ, et al. Ilizarov technique for correcting flexion deformity of the knee of arthrogryposis multiplex congenita. Zhonghua Wai Ke Za Zhi 2004;42(16):993–996. PMID: 153632327.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.