Strategies in Trauma and Limb Reconstruction

Register      Login

VOLUME 17 , ISSUE 3 ( September-December, 2022 ) > List of Articles

CASE REPORT

Efficacy of Temporary Intentional Leg Shortening and Deformation for Treatment of Massive Bone and Soft Tissue Defects in Three Patients

Shuhei Ugaji, Hidenori Matsubara, Takao Aikawa

Keywords : Bone defect, External fixator, Infection, Taylor Spatial Frame, Tibia

Citation Information : Ugaji S, Matsubara H, Aikawa T. Efficacy of Temporary Intentional Leg Shortening and Deformation for Treatment of Massive Bone and Soft Tissue Defects in Three Patients. 2022; 17 (3):195-201.

DOI: 10.5005/jp-journals-10080-1567

License: CC BY-NC-SA 4.0

Published Online: 30-12-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Abstract

Aim: This study describes the intentional deformation and shortening of a limb using external fixation (EF) in three patients with post-traumatic injury tibial defects and to assess the outcomes. Case description: Three patients with infected non-unions and massive bone and soft tissue defects who were treated with temporary intentional leg shortening and deformation using a Taylor Spatial Frame (TSF) EF were retrospectively reviewed. The alignment was restored by gradual deformity correction and lengthening after a 2-week interval. No additional surgical intervention was required for soft tissue reconstruction after primary skin closure. Skin closure and good bone alignment were achieved in all patients. The functional outcomes and bone outcomes were evaluated for all cases according to the Paley criteria modified by the Association for the Study and Application of Methods of Ilizarov. All patients showed excellent bone outcomes. Two patients achieved excellent functional outcomes and one had a good outcome. The patient with a good outcome was unable to descend the stairs comfortably. Conclusion: This technique is suitable for treating massive bone and soft tissue defects and should be considered as a treatment option.


HTML PDF Share
  1. Grubor P, Milicevic S, Grubor M, et al. Treatment of bone defects in war wounds: retrospective study. Med Arch 2015;69(4):260–264. DOI: 10.5455/medarh.2015.69.260-264.
  2. El-Gammal TA, Shiha AE, El-Deen MA, et al. Management of traumatic tibial defects using free vascularized fibula or Ilizarov bone transport: A comparative study. Microsurgery 2008;28(5):339–346. DOI: 10.1002/micr.20501.
  3. Arnež ZM, Papa G, Ramella V, et al. Limb and flap salvage in Gustilo IIIC injuries treated by vascular repair and emergency free flap transfer. J Reconstr Microsurg 2017;33(S 01):S03–S07. DOI: 10.1055/s-0037-1603737.
  4. Masquelet AC, Fitoussi F, Begue T, et al. Reconstruction of the long bones by the induced membrane and spongy autograft. Ann Chir Plast Esthet 2000;45(3):346–353. PMID: 10929461.
  5. Masquelet AC, Begue T. The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am 2010;41(1):27–37. DOI: 10.1016/j.ocl.2009.07.011.
  6. Ronga M, Ferraro S, Fagetti A, et al. Masquelet technique for the treatment of a severe acute tibial bone loss. Injury 2014;45(Suppl. 6):S111–S115. DOI: 10.1016/j.injury.2014.10.033.
  7. Olesen UK, Eckardt H, Bosemark P, et al. The Masquelet technique of induced membrane for healing of bone defects. A review of 8 cases. Injury 2015;46(Suppl. 8):S44–S47. DOI: 10.1016/S0020-1383(15)30054-1.
  8. Nho SJ, Helfet DL, Rozbruch SR. Temporary intentional leg shortening and deformation to facilitate wound closure using the Ilizarov/Taylor Spatial Frame. J Orthop Trauma 2006;20(6):419–424. DOI: 10.1097/00005131-200607000-00010.
  9. Frazer JE. The skull: General account. In: Breathnaach AS, editor. Anatomy of the human skeleton. 6th ed. London: J and A Churchill Ltd., 1965, Vol. 2, pp. 161–181.
  10. Paley D. History and science behind the six-axis correction external fixation devices in orthopaedic surgery. Oper Tech Orthop 2011;21(2):125–128. DOI: 10.1053/j.oto.2011.01.011.
  11. Gustilo RB, Anderson JT. Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: Retrospective and prospective analyses. J Bone Joint Surg Am 1976;58(4):453–458. PMID: 773941.
  12. Johnson EN, Burns TC, Hayda RA, et al. Infectious complications of open type III tibial fractures among combat casualties. Clin Infect Dis 2007;45(4):409–415. DOI: 10.1086/520029.
  13. Shi LL, Garg R, Jawa A, et al. Bony hypertrophy in vascularized fibular grafts. Hand 2022;17(1):106–113. DOI: 10.1177/1558944719895784.
  14. Gao–Hong R, Run–Guang L, Gui–Yong J, et al. A solution to the vessel shortage during free vascularized fibular grafting for reconstructing infected bone defects of the femur: Bridging with vein transplantation. Injury 2017;48(2):486–494. DOI: 10.1016/j.injury.2016.10.027.
  15. Pacelli LL, Gillard J, Mcloughlin SW, et al. A biomechanical analysis of donor-site ankle instability following free fibular graft harvest. J Bone Joint Surg 2003;85(4):597–603. DOI: 10.2106/00004623-200304000-00002.
  16. van der Veen FJ, Strackee SD, Besselaar PP. Progressive valgus deformity of the donor-site ankle after extraperiosteal harvesting the fibular shaft in children. Treatment with osteotomy and synostosis at one session. J Orthop 2014;12(Suppl. 1):S94–S100.
  17. Ricci JA, Abdou SA, Stranix JT, et al. Reconstruction of Gustilo Type 3C injuries of the lower extremity. Plast Reconsrt Surg 2019;144(4):982–987. DOI: 10.1097/PRS.0000000000006063.
  18. Stoddart MT, Al-Hourani K, Fowler T, et al. Plate-assisted intramedullary nailing of Gustilo type IIIB open tibial diaphyseal fractures: does adjunctive plate retention affect complication rate? J Orthop Trauma 2020;34(7):363–369. DOI: 10.1097/BOT.0000000000001738.
  19. Houdek MT, Wagner ER, Watts CD, et al. Free composite serratus anterior-latissimus-rib flaps for acute one-stage reconstruction of Gustilo IIIB tibia fractures. Am J Orthop 2018;47(6). DOI: 10.12788/ajo.2018.0047.
  20. Ricci JA, Stranix JT, Lee ZH, et al. Comparing reconstructive outcomes in patients with Gustilo type 3B fractures and concomitant arterial injuries. Plast Reconstr Surg 2019;143(5):1522–1529. DOI: 10.1097/PRS.0000000000005552.
  21. Gulsen M, Ozkan C. Angular shortening and delayed gradual distraction for the treatment of asymmetrical bone and soft tissue defects of tibia: A case series. J Trauma 2009;66(5):E61–E66. DOI: 10.1097/TA.0b013e318031cca8.
  22. Ilizarov GA. The tension–stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res 1989;(238):249–281. PMID: 2910611.
  23. May JW, Jupiter JB, Weiland AJ, et al. Clinical classification of post-traumatic tibial osteomyelitis. J Bone Joint Surg Am 1989;71(9):1422–1428. PMID: 2677014.
  24. Sakurakichi K, Tsuchiya H, Watanabe K, et al. Distraction osteogenesis of a fresh fracture site using an external fixator. J Orthop Sci 2006;11(4):390–393. DOI: 10.1007/s00776-006-1022-0.
  25. Minematsu K, Tsuchiya H, Taki J, et al. Blood flow measurement during distraction osteogenesis. Clin Orthop Relat Res 1998;(347):229–235. PMID: 9520895.
  26. Lahoti O, Findlay I, Shetty S, et al. Intentional deformation and closure of soft tissue defect in open tibial fractures with a Taylor spatial frame: A simple technique. J Orthop Trauma 2013;27(8):451–456. DOI: 10.1097/BOT.0b013e318284727a.
  27. Pierrie SN, Hsu JR. Shortening and angulation strategies to address composite bone and soft tissue defects. J Orthop Trauma 2017;31(Suppl. 5):S32–S35. DOI: 10.1097/BOT.0000000000000976.
  28. El-Rosasy MA. Acute shortening and re-lengthening in the management of bone and soft-tissue loss in complicated fractures of the tibia. J Bone Joint Surg Br 2007;89(1):80–88. DOI: 10.1302/0301-620X.89B1.17595.
  29. Sen C, Kocaoglu M, Eralp L, et al. Bifocal compression–distraction in the acute treatment of grade III open tibia fractures with bone and soft-tissue loss: A report of 24 cases. J Ortho Trauma 2004;18(3):150–157. DOI: 10.1097/00005131-200403000-00005.
  30. Chummun S, Wigglesworth TA, Young K, et al. Does vascular injury affect the outcome of open tibial fractures? Plast Reconstr Surg 2013;131(2):303–309. DOI: 10.1097/PRS.0b013e3182789bcf.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.