Strategies in Trauma and Limb Reconstruction

Register      Login

VOLUME 17 , ISSUE 3 ( September-December, 2022 ) > List of Articles

Original Article

Early Weight-bearing Accelerates Regenerate Bone Mineralisation: A Pilot Study Comparing Two Post-operative Weight-bearing Protocols Following Intramedullary Limb Lengthening Using the Pixel Value Ratio

Molly E Duncan

Keywords : Intramedullary limb lengthening, Pixel value ratio, Magnetic lengthening nail, Weight-bearing

Citation Information : Duncan ME. Early Weight-bearing Accelerates Regenerate Bone Mineralisation: A Pilot Study Comparing Two Post-operative Weight-bearing Protocols Following Intramedullary Limb Lengthening Using the Pixel Value Ratio. 2022; 17 (3):148-152.

DOI: 10.5005/jp-journals-10080-1572

License: CC BY-NC-SA 4.0

Published Online: 30-12-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Introduction: Limb lengthening is increasingly accomplished by internal lengthening nails. Previous versions of the magnetic lengthening nails made from titanium alloy allowed limited weight-bearing. In contrast, the newer nails made of stainless steel allow increased weight-bearing. An objective comparison of the rate of healing of the regenerate bone based on the weight-bearing capabilities of these two types of lengthening nails has not been evaluated. The hypothesis for the study is that earlier commencement of full weight-bearing in patients treated with the stainless steel STRYDE® nail will lead to faster healing of the regenerate bone during intramedullary limb lengthening compared with those treated with the titanium PRECICE® nail. Materials and methods: Thirty patients, divided into two groups of 15 each, underwent antegrade intramedullary lengthening of the femur using a magnetic lengthening nail between May 2017 and November 2020. The pixel value ratio (PVR) obtained from serial digital radiographs was used to quantitatively determine the regenerate bone’s mineralisation rate. We compared the rate of healing of the regenerate bone in both groups of patients using the PVR. Results: Patients treated with the STRYDE® nail achieved unassisted full weight-bearing significantly earlier than patients treated with the PRECICE® nail (12 weeks vs 17 weeks for STRYDE® and PRECICE® nail-lengthened patients, respectively, p = 0.003). There was no difference in the PVR between both groups of patients at the time of full weight-bearing (p = 0.0857). However, patients treated with the STRYDE® nail attained a PVR of 1 significantly earlier than those treated with the PRECICE® nail (0.0317). Conclusion: The STRYDE® nail provides an earlier return of function and full weight-bearing compared with the PRECICE® lengthening nail. Earlier commencement of weight-bearing ambulation leads to more rapid mineralisation of the regenerate bone in patients undergoing intramedullary limb lengthening.

  1. Kirane YM, Fragomen AT, Rozbruch SR. Precision of the PRECICE® internal bone lengthening nail. Clin Orthop Relat Res 2014;472(12):3869–3878. DOI: 10.1007/s11999-014-3575-0.
  2. Paley D. PRECICE intramedullary limb lengthening system. Expert Rev Med Devices 2015;12(3):231–249. DOI: 10.1586/17434440.2015.1005604.
  3. Rozbruch SR, Birch JG, Dahl MT, et al. Motorized intramedullary nail for management of limb-length discrepancy and deformity. J Am Acad Orthop Surg 2014;22(7):403–409. DOI: 10.5435/JAAOS-22-07-403.
  4. Robbins C, Paley D. Stryde weight-bearing internal lengthening nail. Tech Orthop 2020;35(3):201–208. DOI: 10.1097/BTO.0000000000000475.
  5. Leung KS, Cheung WH, Yeung HY, et al. Effect of weightbearing on bone formation during distraction osteogenesis. Clin Orthop Relat Res 2004;419:251–257. DOI: 10.1097/00003086-200402000-00041.
  6. Fink B, Krieger M, Strauss JM, et al. Osteoneogenesis and its influencing factors during treatment with the Ilizarov method. Clin Orthop Relat Res 1996;323:261–272. DOI: 10.1097/00003086-199602000-00036.
  7. Pacicca DM, Moore DC, Ehrlich MG. Physiologic weight-bearing and consolidation of new bone in a rat model of distraction osteogenesis. J Pediatr Orthop 2002;22(5):652–659. DOI: 10.1097/01241398-200209000-00016.
  8. Galal S, Shin J, Principe P, et al. STRYDE versus PRECICE magnetic internal lengthening nail for femur lengthening. Arch Orthop Trauma Surg 2022;142(12):3555–3561. DOI: 10.1007/s00402-021-03943-8.
  9. Babatunde OM, Fragomen AT, Rozbruch SR. Noninvasive quantitative assessment of bone healing after distraction osteogenesis. HSS J 2010;6:71–78. DOI: 10.1007/s11420-009-9130-y.
  10. Aronson J, Shin HD. Imaging techniques for bone regenerate analysis during distraction osteogenesis. J Pediatr Orthop 2003;23(4):550–560. DOI: 10.1097/01241398-200307000-00025.
  11. Eyres KS, Bell MJ, Kanis JA. Methods of assessing new bone formation during limb lengthening. Ultrasonography, dual energy x-ray absorptiometry and radiography compared. J Bone Joint Surg Br 1993;75(3):358–364. DOI: 10.1302/0301-620x.75b3.8496200.
  12. Saran N, Hamdy RC. DEXA as a predictor of fixator removal in distraction osteogenesis. Clin Orthop Relat Res 2008;466(12):2955–2961. DOI: 10.1007/s11999-008-0514-y.
  13. Hazra S, Song H-R, Biswal S, et al. Quantitative assessment of mineralization in distraction osteogenesis. Skeletal Radiol 2008;37(9):843–847. DOI: 10.1007/s00256-008-0495-7.
  14. Song SH, Agashe M, Kim TY, et al. Serial bone mineral density ratio measurement for fixator removal in tibia distraction osteogenesis and need of a supportive method using the pixel value ratio. J Pediatr Orthop Part B 2012;21(2):137–145. DOI: 10.1097/BPB.0b013e32834f04f3.
  15. Zhao L, Fan Q, Venkatesh KP, et al. Objective guidelines for removing an external fixator after tibial lengthening using pixel value ratio: A pilot study. Clin Orthop Relat Res 2009;467(12):3321–3326. DOI: 10.1007/s11999-009-1011-7.
  16. Muzaffar N, Hafeez A, Modi H, et al. Callus patterns in femoral lengthening over an intramedullary nail. J Orthop Res 2011;29(7):1106–1113. DOI: 10.1002/jor.21353.
  17. Vulcano E, Markowitz JS, Ali S, et al. Assessment of bone healing during antegrade intramedullary rod femur lengthening using radiographic pixel density. J Am Acad Orthop Surg 2018;26(18):e388–e394. DOI: 10.5435/JAAOS-D-16-00949.
  18. Bafor A, Duncan ME, Iobst CA. Evaluating the utility of the pixel value ratio in the determination of time to full weight-bearing in patients undergoing intramedullary limb lengthening. Strategies Trauma Limb Reconstr 2020;15(2):74–78. DOI: 10.5005/jp-journals-10080-1461.
  19. Ilizarov GA. Clinical application of the tension-stress effect for limb lengthening. Clin Orthop Relat Res 1990;250:8–26. DOI: 10.1097/00003086-199001000-00003.
  20. Leung KS, Lee KM, Chan CW, et al. Mechanical characterization of regenerated osseous tissue during callotasis and its related biological phenomenon. Life Sci 1999;66(4):327–336. DOI: 10.1016/S0024-3205(99)00594-9.
  21. Vauhkonen M, Peltonen J, Karaharju E, et al. Collagen synthesis and mineralization in the early phase of distraction bone healing. Bone Miner 1990;10(3):171–181. DOI: 10.1016/0169-6009(90)90260-M.
  22. Huang C, Ogawa R. Mechanotransduction in bone repair and regeneration. FASEB J 2010;24(10):3625–3632. DOI: 10.1096/fj.10-157370.
  23. Kassis B, Glorion C, Tabib W, et al. Callus response to micromovement after elongation in the rabbit. J Pediatr Orthop 1996;16(4):480–483. DOI: 10.1097/00004694-199607000-00011.
  24. Moore DC, Leblanc CW, Müller R, et al. Physiologic weight-bearing increases new vessel formation during distraction osteogenesis: A micro-tomographic imaging study. J Orthop Res 2003;21(3):489–496. DOI: 10.1016/S0736-0266(02)00234-6.
  25. Fink B, Krieger M, Schneider T, et al. Factors affecting bone regeneration in Ilizarov callus distraction. Unfallchirurg 1995;98(12):633–639. PMID: 8584945.
  26. Radomisli TE, Moore DC, Barrach HJ, et al. Weight-bearing alters the expression of collagen types I and II, BMP 2/4 and osteocalcin in the early stages of distraction osteogenesis J Orthop Res 2001;19(6):1049–1056. DOI: 10.1016/S0736-0266(01)00044-4.
  27. Maffulli N, Cheng JCY, Sher A et al. Bone mineralization at the callotasis site after completion of lengthening. Bone 1999;25(3):333–338. DOI: 10.1016/S8756-3282(99)00168-4.
  28. Frost HM. Skeletal structural adaptations to mechanical usage (SATMU): 3. The hyaline cartilage modeling problem. Anat Rec 1990;226(4):423–432. DOI: 10.1002/ar.1092260404.
  29. Hazelwood SJ, Bruce Martin R, Rashid MM, et al. A mechanistic model for internal bone remodeling exhibits different dynamic responses in disuse and overload. J Biomech 2001;34(3):299–308. DOI: 10.1016/S0021-9290(00)00221-9.
  30. Bansal MS, Dwivedi DD, Kumar S, et al. Role of bone turnover marker-bone specific alkaline phosphatase evaluation in monitoring healing of tibial shaft fractures managed by closed reduction. Int J Orthop Sci 2020;6(2):795–800. DOI: 10.22271/ortho.2020.v6.i2m.2139.
  31. Leung KS, Fung KP, Sher AHL, et al. Plasma bone-specific alkaline phosphatase as an indicator of osteoblastic activity. J Bone Joint Surg Br 1993;75(2):288–292. DOI: 10.1302/0301-620x.75b2.8444951.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.