Strategies in Trauma and Limb Reconstruction

Register      Login

VOLUME 16 , ISSUE 1 ( January-April, 2021 ) > List of Articles

Original Article

Functional Outcomes and Quality of Life Following Complex Tibial Fractures Treated with Circular External Fixation: A Comparison between Proximal, Midshaft, and Distal Tibial Fractures

Jaco J Naude, Muhammad A Manjra, Franz Birkholtz, Annette-Christi Barnard, Kevin Tetsworth, Vaida Glatt, Erik Hohmann

Keywords : Circular external fixation, Clinical outcomes, Complex tibial fractures

Citation Information : Naude JJ, Manjra MA, Birkholtz F, Barnard A, Tetsworth K, Glatt V, Hohmann E. Functional Outcomes and Quality of Life Following Complex Tibial Fractures Treated with Circular External Fixation: A Comparison between Proximal, Midshaft, and Distal Tibial Fractures. 2021; 16 (1):32-40.

DOI: 10.5005/jp-journals-10080-1506

License: CC BY-NC-SA 4.0

Published Online: 00-04-2021

Copyright Statement:  Copyright © 2021; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Aim and objective: The purpose of this study was to compare clinical results following complex proximal, midshaft, and distal tibial fractures and investigate whether there are differences in outcomes between these locations. Materials and methods: Patients between 18 years and 65 years of age and minimum follow-up of 12 months with complex tibial fractures treated with a circular ring fixator were included. Functional outcomes were assessed using the Association for the Study and Application of Methods of Ilizarov (ASAMI) functional and bone scores, Foot Function Index (FFI), Four Step Square Test (FSST), and Timed Up and Go Test (TUG). Quality of life was assessed by the EQ-5D score. Results: A total of 45 patients were included: proximal fractures, n = 11; midshaft fractures, n = 17; and distal fractures, n = 17. ASAMI functional (p = 0.8) and bone scores (p = 0.3) were not different. Excellent and good bone scores were achieved in >90% in all groups. FFI was 30.9 + 24.7 in the proximal group, 33.9 + 27.7 in the midshaft group, and 28.8 + 26.9 in the distal group (p = 0.8). TUG was 9.0 + 2.7 sec in the proximal group, 9.0+3.5 in the midshaft group, and 8.5+2.0 in the distal group (p = 0.67). FSST was 10.7 + 2.5 sec in the proximal, 10.3 + 3.8 in the midshaft, and 8.9 + 1.8 in the distal fracture groups (p = 0.5). EQ-5D index value was highest in the distal (0.72), lowest in the proximal (0.55), and 0.70 in the midshaft fracture groups (p = 0.001). EQ-5D VAS was significantly different between the proximal (65) and midshaft (82.3) (p = 0.001) and between the distal (75) and proximal (65) fracture groups (p = 0.001). Conclusions: The results of this study suggest that the functional outcomes between proximal, midshaft, and distal complex tibial fractures are comparable. Their ability to ambulate afterward is comparable to age-related normative data, but complex tasks are more difficult and better compared to the ambulating ability of a healthy population aged 65 to 80 years. Patients with proximal tibial fractures had significantly more disability by at least one functional level and/or one health dimension.


PDF Share
  1. Court-Brown CM, Wheelwright EF, Christie J, et al. External fixation for type III open tibial fractures. J Bone Joint Surg Br 1990;72(5):801–804. DOI: 10.1302/0301-620X.72B5.2211760.
  2. van der Merwe L, Birkholtz F, Tetsworth K, et al. Functional and psychological outcomes of delayed lower limb amputation following failed lower limb reconstruction. Injury 2016;47(8):1756–1760. DOI: 10.1016/j.injury.2016.05.027.
  3. Van Niekerk AH, Birkholtz FF, de Lange P, et al. Circular external fixation and cemented PMMA spacers for the treatment of complex tibial fractures and infected nonunions with segmental bone loss. J Orthop Surg 2017;25(2):2309499017716242. DOI: 10.1177/2309499017716242.
  4. Molepo M, Barnard AC, Birkholtz F, et al. Functional outcomes of the failed plate fixation in distal tibial fractures. Eur J Orthop Surg Traumatol 2018;28(8):1617–1624. DOI: 10.1007/s00590-018-2231-x.
  5. Dickson DR, Moulder E, Hadland Y, et al. Grade 3 open tibial shaft fractures treated with a circular frame, functional outcome and systematic review of literature. Injury 2015;46(4):751–758. DOI: 10.1016/j.injury.2015.01.025.
  6. Webb LX, Bosse MJ, Castillo RC, et al. Analysis of surgeon-controlled variables in the treatment of limb-threatening type-III open tibial diaphyseal fractures. J Bone Joint Surg Am 2007;89(5):923–928. DOI: 10.2106/JBJS.F.00776.
  7. Harris AM, Althausen PL, Kellam PL, et al. Complications following limb-threatening lower extremity trauma. J Orthop Trauma 2009;23(1):1–6. DOI: 10.1097/BOT.0b013e31818e43dd.
  8. Henderson D, Barron E, Hadland Y, et al. Functional outcomes after tibial shaft fractures treated using the Taylor spatial frame. J Orthop Trauma 2015;29:54–59. DOI: 10.1097/BOT.0000000000000192.
  9. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res 1989;238:249–281.
  10. Gasser B, Boman B, Wyder D, et al. Stiffness characteristics of the circular Ilizarov device as opposed to conventional external fixators. J Biomech Eng 1990;112(1):15–21. DOI: 10.1115/1.2891120.
  11. Henderson DJ, Rushbrook JL, Harwood PJ, et al. What are the biomechanical properties of the Taylor Spatial Frame? Clin Orth Relat Res 2017;475(5):1472–1482. DOI: 10.1007/s11999-016-5182-8.
  12. Hasler C, Krieg A. Current concepts on leg lengthening. J Child Orthop 2012;6(2):89–401. DOI: 10.1007/s11832-012-0391-5.
  13. Ferreira N, Birkholtz F. Radiographic analysis of hexapod external fixators: fundamental differences between the taylor spatial frame and truelok-hex. J Med Eng Technol 2015;39(3):173–176. DOI: 10.3109/03091902.2015.1025993.
  14. Dammerer D, Kirschbichler K, Donnan L, et al. Clinical value of the taylor spatial frame: a comparison with the ilizarov and orthofix fixators. J Child Orthop 2011;5(5):343–349. DOI: 10.1007/s11832-011-0361-3.
  15. Attal R, Hansen M, Kirjavainen M, et al. A multicentre case series of tibial fractures treated with the expert tibial nail (ETN). Arch Orthop Traum Surg 2012;132(7):975–984. DOI: 10.1007/s00402-012-1502-y.
  16. Kim PH, Leopold SS. Gustilo-Anderson classification. Clin Orth Relat Res 2012;470(11):3270–3274. DOI: 10.1007/s11999-012-2376-6.
  17. Hohmann E, Birkholtz F, Glatt V, et al. The “Road to Union” protocol for the reconstruction of isolated complex high-energy tibial trauma. Injury 2017;48(6):1211–1216. DOI: 10.1016/j.injury.2017.03.018.
  18. Paley D, Catagni MA, Argnani F, et al. Ilizarov treatment of tibial nonunions with bone loss. Clin Orthop Relat Res;241:146–165.
  19. Budiman-Mak E, Conrad KJ, Roach KE. The foot function index: a measure of foot pain and disability. J Clin Epidemiol 1991; 44:561–570. DOI: 10.1016/0895-4356(91)90220-4.
  20. EuroQol Group. EuroQol – a new facility for the measurement of health-related quality of life. Health Policy 1990;16(3):199–208. DOI: 10.1016/0168-8510(90)90421-9.
  21. Dite W, Temple VA. A clinical test of stepping and change of direction to identify multiple falling older adults. Arc Phys Med Rehabil 2002;83(11):1566–1571. DOI: 10.1053/apmr.2002.35469.
  22. Blennerhassett JM, Jayalath VM. The four square step test is a feasible and valid clinical test of dynamic standing balance for use in ambulant people post stroke. Arch Phys Med Rehabil 2008;89(11):2156–2161. DOI: 10.1016/j.apmr.2008.05.012.
  23. Wall JC, Bell C, Campbell S, Davis J. (2000) The timed get-up-and-go test revisited: Measurement of the component tasks. J Rehabil Res Dev; 37:109-113
  24. Whitaker AT, Gesheff MG, Jauregui JJ, et al. Comparison of PACS and Bone Ninja mobile application for assessment of lower extremity limb length discrepancy and alignment. J Child Orthop 2016;10(5):439–443. DOI: 10.1007/s11832-016-0761-5.
  25. Whelan DB, Bhandari M, McKee MD, et al. Interobserver and intraobserver variation in the assessment of the healing of tibial fractures after intramedullary fixation. J Bone Joint Surg Br 2002;84(1):15–18. DOI: 10.1302/0301-620x.84b1.11347.
  26. Nieuwoudt L, Ferreira N, Marais LC. Short-term results of grade III open tibia fractures treated with circular fixators. SA Orthop J 2016;15(3):20–26. DOI: 10.17159/2309-8309/2016/v15n3a2.
  27. Giotakis N, Panchani SK, Narayan B, et al. Segmental fractures of the tibia treated by circular external fixation. J Bone Joint Surg Br 2010;92(5):687–692. DOI: 10.1302/0301-620X.92B5.22514.
  28. Foster PA, Barton SB, Jones SC, et al. The treatment of complex tibial shaft fractures by the Ilizarov method. J Bone Joint Surg Br 2012;94(12):1678–1683. DOI: 10.1302/0301-620X.94B12.29266.
  29. Castellani C, Riedl G, Eberl R, et al. Transitional fractures of the distal tibia: a minimal access approach for osteosynthesis. J Trauma 2009;67(6):1371–1375. DOI: 10.1097/TA.0b013e31818866fd.
  30. Gaskill T, Schweitzer K, Nunley J. Comparison of surgical outcomes of intra-articular calcaneal fractures by age. J Bone Joint Surg Am 2010;92(18):2884–2889. DOI: 10.2106/JBJS.J.00089.
  31. SooHoo NF, Samimi DB, Vyas RM, et al. Evaluation of the foot function index in measuring outcomes in patients with foot and ankle disorders. Foot Ankle Int 2006;27(1):38–42. DOI: 10.1177/107110070602700107.
  32. Bohannon RW. Reference values for the timed up and go test: a descriptive meta-analysis. J Geriatr Phys Ther 2006;29(2):64–68. DOI: 10.1519/00139143-200608000-00004.
  33. Kear BM, Guck TP, McGaha AL. Timed Up and Go (TUG) test: normative reference values for ages 20 to 59 years and relationships with physical and mental health risk factors. J Prim Care Community Health 2017;8(1):9–13. DOI: 10.1177/2150131916659282.
  34. Moore M, Barker K. The validity and reliability of the four square step test in different adult populations: a systematic review. Syst Rev 2017;6(1):187. DOI: 10.1186/s13643-017-0577-5.
  35. Langford Z. The four square step test. J Physiotherapy 2015;61(3):162. DOI: 10.1016/j.jphys.2015.03.005.
  36. Luo N, Johnson J, Coons SJ. Using instrument-defined health state transitions to estimate minimally important differences for four preference-based health-related quality of life instruments. Med Care 2010;48(4):365–371. DOI: 10.1097/mlr.0b013e3181c162a2.
  37. Canadian Orthopaedic Trauma Society. Open reduction and internal fixation compared with circular fixation for bicondylar tibial plateau fractures. Results of a multicentre, prospective, randomized clinical trial. J Bone Joint Surg Am 2006;88(12):2613–2623. DOI: 10.2106/JBJS.E.01416.
  38. Elsoe R, Larsen P, Petruskevicius J, et al. Complex tibial fractures are associated with lower social classes and predict early exit from employment and worse patient-reported QOL: a prospective observational study of 46 complex tibial fractures treated with a ring fixator. Strat Traum Limb Recon 2018;13(1):25. DOI: 10.1007/s11751-017-0301-y.
  39. Ramos T, Ekholm C, Eriksson BI, et al. The Ilizarov external fixator – a useful alternative for the treatment of proximal tibial fractures. A prospective observational study of 30 consecutive patients. BMC Musculoskelet Disord 2013;14:11. DOI: 10.1186/1471-2474-14-11.
  40. Ramos T, Karlsson J, Eriksson BI, et al. Treatment of distal tibial fractures with the Ilizarov external fixator – a prospective observational study in 39 consecutive patients. BMC Musculoskelet Disord 2013;14:30. DOI: 10.1186/1471-2474-14-30.
  41. Schauver MS, Aravind MS, Chung KC. A qualitative study of recovery from type III-B and III-C tibial fractures. Ann Plast Surg 2011;66(1):73–79. DOI: 10.1097/SAP.0b013e3181d50eba.
  42. Harms L, Talbot M. The aftermath of road trauma: survivors’ perception of trauma and growth. Health Soc Work 2007;32(2):129–137. DOI: 10.1093/hsw/32.2.129.
  43. O’Toole RV, Castillo RC, Pollak AN, et al. Determinants of patient satisfaction after severe lower-extremity injuries. J Bone Joint Surg Am 2008;90(6):1206–1211. DOI: 10.2106/JBJS.G.00492.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.