Strategies in Trauma and Limb Reconstruction

Register      Login

VOLUME 15 , ISSUE 3 ( September-December, 2020 ) > List of Articles

CLINICAL TECHNIQUE

The Joint Angle Tool for Intraoperative Assessment of Coronal Alignment of the Lower Limb

Ahmed A-H Abood, Juozas Petruskevicius, Björn Vogt, Adrien Frommer, Robert Rödl, Jan Duedal Rölfing

Keywords : Anatomic axis, Bone transport, Deformity correction, Distal femoral osteotomy, Fitbone, High tibial osteotomy, Limb lengthening, MAD, Mechanical axis, NuVasive, Orthopaedic reconstruction, Osteotomy, Technique

Citation Information : Abood AA, Petruskevicius J, Vogt B, Frommer A, Rödl R, Rölfing JD. The Joint Angle Tool for Intraoperative Assessment of Coronal Alignment of the Lower Limb. 2020; 15 (3):169-173.

DOI: 10.5005/jp-journals-10080-1511

License: CC BY-NC-SA 4.0

Published Online: 00-12-2020

Copyright Statement:  Copyright © 2020; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Aim: Presentation of the joint angle tool (JAT), a low-cost goniometer for intraoperative assessment of the lower limb alignment. Background: Intraoperative assessment of coronal alignment is important when performing corrective osteotomies around the knee and ankle, limb lengthening, and trauma surgery. JAT provides surgeons with information about the anatomic and mechanical axes intraoperatively based on true anteroposterior radiographs. Technique: JAT consists of pre-printed joint orientation angles of the anatomic and mechanical axis including normal variations on a plastic sheet. It is placed on the screen of the image intensifier after obtaining a true anteroposterior image. The pre-printed joint orientation angles can assist the surgeons intraoperatively in achieving the pre-planned axis correction. Here, its feasibility is demonstrated in four cases. Conclusion and clinical significance: JAT is a modified goniometer that allows intraoperative assessment of the mechanical and anatomic axis. JAT is applicable throughout the entire surgical procedure irrespective of the method of internal fixation and may provide additional reassurance of correct alignment. JAT consists of a plastic sheet with printed joint orientation angles and their normal variation. JAT is freely available from profeedback.dk/JAT/JAT.pdf for use and modification according to the Creative Commons license (CC BY-SA 4.0) if this paper is attributed.


PDF Share
  1. Paley D. Principles of Deformity Correction. Berlin, Heidelberg: Springer Berlin Heidelberg; 2002.
  2. Moreland JR, Bassett LW, Hanker GJ. Radiographic axial analysis of the lower of the extremity. J. Bone Joint Surg Am 1987;69(5):745–749.
  3. Fragomen AT, Rozbruch SR. Lengthening and deformity correction about the knee using a magnetic internal lengthening nail. SICOT J 2017;3:25. DOI: 10.1051/sicotj/2017014.
  4. Brinkman J-M, Lobenhoffer P, Agneskirchner JD, et al. Osteotomies around the knee: patient selection, stability of fixation and bone healing in high tibial osteotomies. J Bone Joint Surg Br 2008;90(12):1548–1557. DOI: 10.1302/0301-620X.90B12.21198.
  5. Frommer A, Rödl R, Gosheger G, et al. Application of motorized intramedullary lengthening nails in skeletally immature patients: indications and limitations. Unfallchirurg 2018;121(11):860–867. DOI: 10.1007/s00113-018-0541-4.
  6. Ashfaq K, Fragomen AT, Nguyen JT, et al. Correction of proximal tibia varus with external fixation. J Knee Surg 2012;25(5):375–384. DOI: 10.1055/s-0031-1299659.
  7. Baumgart R. The reverse planning method for lengthening of the lower limb using a straight intramedullary nail with or without deformity correction. Oper Orthop Traumatol 2009;21(2):221–233. DOI: 10.1007/s00064-009-1709-4.
  8. Lee DC, Byun SJ. High tibial osteotomy. Knee Surg Relat Res 2012;24(2):61–69. DOI: 10.5792/ksrr.2012.24.2.61.
  9. Krettek C, Miclau T, Grun O, et al. Intraoperative control of axes, rotation and length in femoral and tibial fractures. Technical note. Injury 1998;29(Suppl 3):C29–C39. DOI: 10.1016/s0020-1383(98)95006-9.
  10. Hankemeier S, Gosling T, Richter M, et al. Computer-assisted analysis of lower limb geometry: higher intraobserver reliability compared to conventional method. Comput Aided Surg 2006;11(2):81–86. DOI: 10.3109/10929080600628985.
  11. Liodakis E, Kenawey M, Liodaki E, et al. The axis-board: An alternative to the cable technique for intraoperative assessment of lower limb alignment. Technol Health Care 2010;18(3):165–171. DOI: 10.3233/THC-2010-0579.
  12. Jacquet C, Chan-Yu-Kin J, Sharma A, et al. More accurate correction using “patient-specific” cutting guides in opening wedge distal femur varization osteotomies. Int Orthop 2019;43(10):2285–2291. DOI: 10.1007/s00264-018-4207-1.
  13. Rogers MJ, McFadyen I, Livingstone JA, et al. Computer hexapod assisted orthopaedic surgery (CHAOS) in the correction of long bone fracture and deformity. J Orthop Trauma 2007;21(5):337–342. DOI: 10.1097/BOT.0b013e3180463103.
  14. Rudin S, Bednarek DR, Wong R. Accurate characterization of image intensifier distortion. Med Phys 1991;18(6):1145–1151. DOI: 10.1118/1.596623.
  15. Boduch A, Hennrikus M, Adebayo T, et al. Accuracy of C-arm measurements in assessment of paediatric femoral fracture shortening. J Child Orthop 2017;11(6):460–464. DOI: 10.1302/1863-2548.11.170116.
  16. Kummer FJ, Grant AM. Possible errors in pin insertion positions using the C-arm. Bull Hosp Jt Dis 2004;62(1–2):67–68.
  17. Kold S, Christensen KS. Bone transport of the tibia with a motorized intramedullary lengthening nail-a case report. Acta Orthop 2014;85(2):211–213. DOI: 10.3109/17453674.2014.887953.
  18. Horn J, Hvid I, Huhnstock S, et al. Limb lengthening and deformity correction with externally controlled motorized intramedullary nails: evaluation of 50 consecutive lengthenings. Acta Orthop 2019;90(1):81–87. DOI: 10.1080/17453674.2018.1534321.
  19. Calder PR, McKay JE, Timms AJ, et al. Femoral lengthening using the Precice intramedullary limb-lengthening system: outcome comparison following antegrade and retrograde nails. Bone Joint J 2019;101-B(9):1168–1176. DOI: 10.1302/0301-620X.101B9.BJJ-2018-1271.R1.
  20. Olesen UK, Nygaard T, Prince DE, et al. Plate-assisted bone segment transport with motorized lengthening nails and locking plates. J Am Acad Orthop Surg Glob Res Rev 2019;3(8):e064. DOI: 10.5435/JAAOSGlobal-D-19-00064.
  21. Sabharwal S, Zhao C, Edgar M. Lower limb alignment in children: reference values based on a full-length standing radiograph. J Pediatr Orthop 2008;28(7):740–746. DOI: 10.1097/BPO.0b013e318186eb79.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.