Strategies in Trauma and Limb Reconstruction

Register      Login

VOLUME 15 , ISSUE 1 ( January-April, 2020 ) > List of Articles


Lengthening Nails for Distraction Osteogenesis: A Review of Current Practice and Presentation of Extended Indications

Ahmed H Barakat, Junaid Sayani, Christopher O Dowd-Booth, Enis Guryel

Citation Information : Barakat AH, Sayani J, O Dowd-Booth C, Guryel E. Lengthening Nails for Distraction Osteogenesis: A Review of Current Practice and Presentation of Extended Indications. 2020; 15 (1):54-61.

DOI: 10.5005/jp-journals-10080-1451

License: CC BY-NC-SA 4.0

Published Online: 03-02-2021

Copyright Statement:  Copyright © 2020; The Author(s).


Purpose: Circular frames have been the gold standard of treatment for complex deformity corrections and bone loss. However, despite the success of frames, patient satisfaction has been low, and complications are frequent. Most recently, lengthening nails have been used to correct leg length discrepancies. In this article, we review the current trends in deformity correction with emphasis on bone lengthening and present our case examples on the use of lengthening nails for management of complex malunions, non-unions, and a novel use in bone transport. Materials and methods: A nonsystematic literature review on the topic was performed. Four case examples from our institute, Brighton and Sussex University Hospitals, East Sussex, England, UK, were included. Results: New techniques based on intramedullary bone lengthening and deformity correction are replacing the conventional external frames. Introduction of lengthening and then nailing and lengthening over a nail techniques paved the way for popularization of the more recent lengthening nails. Lengthening nails have gone through evolution from the first mechanical nails to motorized nails and more recently the magnetic lengthening nails. Two case examples demonstrate successful use of lengthening nails for management of malunion, and two case examples describe novel use in management of non-unions, including the first report in the literature of plate-assisted bone segment transport for the longest defect successfully treated using this novel technique. Conclusion: With the significant advancement of intramedullary lengthening devices with lower complications rates and higher patient satisfaction, the era of the circular frame may be over.

  1. Papakostidis C, Bhandari M, Giannoudis PV. Distraction osteogenesis in the treatment of long bone defects of the lower limbs: effectiveness, complications and clinical results; a systematic review and meta-analysis. Bone Joint J 2013;95-B(12):1673–1680. DOI: 10.1302/0301-620X.95B12.32385.
  2. Spiegelberg B, Parratt T, Dheerendra S, et al. Ilizarov principles of deformity correction. Ann R Coll Surg Engl 2010;92(2):101–105. DOI: 10.1308/003588410X12518836439326.
  3. Adili A, Bhandari M, Giffin R, et al. Valgus high tibial osteotomy. Comparison between an Ilizarov and a coventry wedge technique for the treatment of medial compartment osteoarthritis of the knee. Knee Surg, Sports Traumatol, Arthroscopy 2002;10(3):169–176. DOI: 10.1007/s00167-001-0250-2.
  4. Rozbruch SR, Segal K, Ilizarov S, et al. Does the Taylor spatial frame accurately correct tibial deformities? Clin Orthop Relat Res 2009;468(5):1352–1361. DOI: 10.1007/s11999-009-1161-7.
  5. Eidelman M, Bialik V, Katzman A. Correction of deformities in children using the Taylor spatial frame. J Pediat Orthoped Part B 2006;15(6):387–395. DOI: 10.1097/01.bpb.0000228380.27239.8a.
  6. Rogers MJ, McFadyen I, Livingstone JA, et al. Computer hexapod assisted orthopaedic surgery (CHAOS) in the correction of long bone fracture and deformity. J Orthop Trauma 2007;21(5):337–342. DOI: 10.1097/BOT.0b013e3180463103.
  7. Harbacheuski R, Fragomen AT, Rozbruch SR. Does lengthening and then plating (LAP) shorten duration of external fixation?. Clin Orthop Relat Res 2011;470(6):1771–1781. DOI: 10.1007/s11999-011-2178-2.
  8. Iobst CA, Dahl MT. Limb lengthening with Submuscular plate stabilization. J Pediat Orthopaed 2007;27(5):504–509. DOI: 10.1097/01.bpb.0000279020.96375.88.
  9. Rozbruch SR, Kleinman D, Fragomen AT, et al. Limb lengthening and then insertion of an intramedullary nail: a case-matched comparison. Clin Orthop Relat Res 2008;466(12):2923–2932. DOI: 10.1007/s11999-008-0509-8.
  10. Xu WG. Comparison of intramedullary nail versus conventional Ilizarov method for lower limb lengthening: a systematic review and meta-analysis. Orthopaed Surg 2017;9(2):159–166. DOI: 10.1111/os.12330.
  11. Baumgart R. The reverse planning method for lengthening of the lower limb using a straight intramedullary nail with or without deformity correction. A new method. Oper Orthop Traumatol 2009;21(2):221–233. DOI: 10.1007/s00064-009-1709-4.
  12. Emara KM, Mahran MA, Ghaly NAM, et al. Comparison between lengthening over nail and conventional Ilizarov lengthening: a prospective randomized clinical study. Strategies Trauma Limb Reconstruc (Online) 2013;8(2):97–101. DOI: 10.1007/s11751-013-0163-x.
  13. Mahboubian S, Seah M, Fragomen AT, et al. Femoral lengthening with lengthening over a nail has fewer complications than intramedullary skeletal kinetic distraction. Clin Orthop Relat Res 2011;470(4): 1221–1231. DOI: 10.1007/s11999-011-2204-4.
  14. Fragomen AT, Kurtz AM, Barclay JR, et al. A comparison of femoral lengthening methods favors the magnetic internal lengthening nail when compared with lengthening over a nail. HSS J 14(2):166–176. DOI: 10.1007/s11420-017-9596-y.
  15. Simpson AH, Cole AS, Kenwright J. Leg lengthening over an intramedullary nail. J Bone Joint Surg Br 1998;81(6):1041–1045. DOI: 10.1302/0301-620X.81B6.0811041.
  16. Chaudhary M. Limb lengthening over a nail can safely reduce the duration of external fixation. Indian J Orthop 2008;42(3):323–329. DOI: 10.4103/0019-5413.41857.
  17. Kocaoglu M, Eralp L, Kilicoglu O, et al. Complications encountered during lengthening over an intramedullary nail. J Bone Joint Surg Am 2004;86(11):2406–2411. DOI: 10.2106/00004623-200411000-00007.
  18. Tosun HB, Agir I, Gumustas S, et al. Tibial lengthening using a fixator-assisted lengthening plate: a new technique. Trauma Mon 2016;21(5):e25340. DOI: 10.5812/traumamon.25340.
  19. Yamaji T, Ando K, Nakamura T, et al. Femoral shaft fracture callus formation after intramedullary nailing: a comparison of interlocking and Ender nailing. J Orthop Sci 2002;7(4):472–476. DOI: 10.1007/s007760200082.
  20. Kojimoto H, Yasui N, Goto T, et al. Bone lengthening in rabbits by callus distraction. The role of periosteum and endosteum. J Bone Joint Surg Br 1988;70(4):543–549. DOI: 10.1302/0301-620X.70B4.3403595.
  21. Danckwardt-Lilliestrom G. Reaming of the medullary cavity and its effect on diaphyseal bone. A fluorochromic, microangiographic and histologic study on the rabbit tibia and dog femur. Acta Orthop Scand Suppl 1969;128(sup128):1–153. DOI: 10.3109/ort.1969.40.suppl-128.01.
  22. Kessler SB, Hallfeldt KKJ, Perren SM, et al. The effects of reaming and intramedullary nailing on fracture healing. Clin Orthop Relat Res 1986(212):18–25. DOI: 10.1097/00003086-198611000-00004.
  23. Utvag SE, Grundnes O, Reikeras O. Graded exchange reaming and nailing of non-unions. Strength and mineralisation in rat femoral bone. Arch Orthop Trauma Surg 1998;118(1-2):1–6. DOI: 10.1007/s004020050300.
  24. Brinker MR, O'Connor DP. Exchange nailing of ununited fractures. J Bone Joint Surg Am 2007;89(1):177–188. DOI: 10.2106/JBJS.F.00742.
  25. Hak DJ, Lee SS, Goulet JA. Success of exchange reamed intramedullary nailing for femoral shaft nonunion or delayed union. J Orthop Trauma 2000;14(3):178–182. DOI: 10.1097/00005131-200003000-00005.
  26. Zelle BA, Gruen GS, Klatt B, et al. Exchange reamed nailing for aseptic nonunion of the tibia. J Trauma 2004;57(5):1053–1059. DOI: 10.1097/01.ta.0000100380.50031.dc.
  27. Bost FC, Larsen LJ. Experiences with lengthening of the femur over n intramedullary rod. J Bone Joint Surg Am 1956;38-a(3):567–584. DOI: 10.2106/00004623-195638030-00007.
  28. Gotz J, Schellmann WD. Continuous lengthening of the femur with intramedullary stabilisation (author's transl)]. Arch Orthop Unfallchir 1975;82(4):305–310. DOI: 10.1007/BF00418926.
  29. Guichet JM, Casar RS. Mechanical characterization of a totally intramedullary gradual elongation nail. Clin Orthop Relat Res 1997(337):281–290. DOI: 10.1097/00003086-199704000-00032.
  30. Cole JD, Justin D, Kasparis T, et al. The intramedullary skeletal kinetic distractor (ISKD): First clinical results of a new intramedullary nail for lengthening of the femur and tibia. Injury 2001;32(Suppl 4): Sd129–Sd139. DOI: 10.1016/s0020-1383(01)00116-4.
  31. Hankemeier S, Gosling T, Pape HC, et al. Limb lengthening with the intramedullary skeletal kinetic distractor (ISKD). Oper Orthop Traumatol 2005;17(1):79–101. DOI: 10.1007/s00064-005-1123-5.
  32. Burghardt RD, Herzenberg JE, Specht SC, et al. Mechanical failure of the intramedullary skeletal kinetic distractor in limb lengthening. J Bone Joint Surg Br 2011;93(5):639–643. DOI: 10.1302/0301-620X.93B5.25986.
  33. Kenawey M, Krettek C, Liodakis E, et al. Leg lengthening using intramedullay skeletal kinetic distractor: Results of 57 consecutive applications. Injury 2011;42(2):150–155. DOI: 10.1016/j.injury.2010.06.016.
  34. Mazeau P, Assi C, Louahem D, et al. Complications of albizzia femoral lengthening nail: An analysis of 36 cases. J Pediat Orthoped Part B 2012;21(5):394–399. DOI: 10.1097/BPB.0b013e328354b029.
  35. Rozbruch SR, Birch JG, Dahl MT, et al. Motorized intramedullary nail for management of limb-length discrepancy and deformity. J Am Acad Orthop Surg 2014;22(7):403–409. DOI: 10.5435/JAAOS-22-07-403.
  36. Dinçyürek H, Kocaoğlu M, Eralp IL, et al. Functional results of lower extremity lengthening by motorized intramedullary nails. Acta Orthop Traumatol Turc 2012;46(1):42–49. DOI: 10.3944/aott.2012.2671.
  37. Cheung KMC, Cheung JPY, Samartzis D, et al. Magnetically controlled growing rods for severe spinal curvature in young children: a prospective case series. Lancet (London, England) 2012;379(9830):1967–1974. DOI: 10.1016/S0140-6736(12)60112-3.
  38. Wick JM, Konze J. A magnetic approach to treating progressive early-onset scoliosis. AORN J 2012;96(2):163–173. DOI: 10.1016/j.aorn.2012.05.008.
  39. Makhdom AM, Cartaleanu AS, Rendon JS, et al. The accordion maneuver: a noninvasive strategy for absent or delayed callus formation in cases of limb lengthening. Adv Orthop 2015;2015:912790. DOI: 10.1155/2015/912790.
  40. Thaller PH, Fürmetz J, Wolf F, et al. Limb lengthening with fully implantable magnetically actuated mechanical nails (PHENIX((R)))-preliminary results. Injury 2014;45(Suppl 1):S60–S65. DOI: 10.1016/j.injury.2013.10.029.
  41. Konofaos P, Kashyap A, Neel MD, et al. A novel device for long bone osteodistraction: Description of device and case series. Plast Reconstr Surg 2012;130(3):418e–422e. DOI: 10.1097/PRS.0b013e31825dc069.
  42. Gomez C, Nelson S, Speirs J, et al. Magnetic intramedullary lengthening nails and MRI compatibility. J Pediatr Orthop 2018;38(10):e584–e587. DOI: 10.1097/BPO.0000000000001236.
  43. Kirane YM, Fragomen AT, Rozbruch SR. Precision of the PRECICE internal bone lengthening nail. Clin Orthop Relat Res 2014;472(12):3869–3878. DOI: 10.1007/s11999-014-3575-0.
  44. Schiedel FM, Vogt B, Tretow HL, et al. How precise is the PRECICE compared to the ISKD in intramedullary limb lengthening? Reliability and safety in 26 procedures. Acta Orthop 2014;85(3):293–298. DOI: 10.3109/17453674.2014.913955.
  45. Lee DH, Kim S, Lee JW, et al. A comparison of the device-related complications of intramedullary lengthening nails using a new classification system. Biomed Res Int 2017;2017:8032510. DOI: 10.1155/2017/8032510.
  46. Hammouda AI, Jauregui JJ, Gesheff MG, et al. Treatment of post-traumatic femoral discrepancy with PRECICE magnetic-powered intramedullary lengthening nails. J Orthop Trauma 2017;31(7): 369–374. DOI: 10.1097/BOT.0000000000000828.
  47. Paley D. PRECICE intramedullary limb lengthening system. Expert Rev Med Devices 2015;12(3):231–249. DOI: 10.1586/17434440.2015.1005604.
  48. Panagiotopoulou VC, Davda K, Hothi HS, et al. A retrieval analysis of the precice intramedullary limb lengthening system. Bone Joint Res 2018;7(7):476–484. DOI: 10.1302/2046-3758.77.BJR-2017-0359.R1.
  49. Iobst CA, Rozbruch SR, Nelson S, et al. Simultaneous acute femoral deformity correction and gradual limb lengthening using a retrograde femoral nail. J Am Acad Orthopaed Surg 2018;26(7): 241–250. DOI: 10.5435/JAAOS-D-16-00573.
  50. Mahomed N, O'Farrell P, Barnard AC, et al. Monofocal distraction treatment of stiff aseptic tibial nonunions with hexapod circular external fixation. J Limb Lengthen Reconstruct 2017;3(2):101–106. DOI: 10.4103/jllr.jllr_31_16.
  51. Fragomen AT, Wellman D, Rozbruch SR. The PRECICE magnetic IM compression nail for long bone nonunions: a preliminary report. Arch Orthop Trauma Surg 2019;139(11):1551–1560. DOI: 10.1007/s00402-019-03225-4.
  52. Barinaga G, Beason AM, Gardner MP. Novel surgical approach to segmental bone transport using a magnetic intramedullary limb lengthening system. J Am Acad Orthop Surg 2018;26(22):e477–e482. DOI: 10.5435/JAAOS-D-17-00487.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.