Strategies in Trauma and Limb Reconstruction

Register      Login

VOLUME 15 , ISSUE 1 ( January-April, 2020 ) > List of Articles

Original Article

Influence of Different Connecting Rod Configurations on the Stability of the Ilizarov/TSF Frame: A Biomechanical Study

Gerhard Thiart, Christopher Herbert, Sudesh Sivarasu, Saadiq Gasant, Maritz Laubscher

Citation Information : Thiart G, Herbert C, Sivarasu S, Gasant S, Laubscher M. Influence of Different Connecting Rod Configurations on the Stability of the Ilizarov/TSF Frame: A Biomechanical Study. 2020; 15 (1):23-27.

DOI: 10.5005/jp-journals-10080-1447

License: CC BY-NC-SA 4.0

Published Online: 27-01-2021

Copyright Statement:  Copyright © 2020; The Author(s).


Abstract

Aim: The Ilizarov external fixator (IEF) is frequently used in trauma and elective orthopaedics. Many of its biomechanical variables (ring size, wire diameter, wire number, half pins vs wires, etc.) and their influence on stability and stiffness have been investigated. There is, however, a paucity in the literature regarding the influence of the connecting rod numbers and configurations between the rings on IEF stability. The primary aim of this biomechanical study was to compare the stability between four- and three-rod IEF configurations. Secondarily to assess the difference in stability between symmetrical and asymmetrical spacing of the IEF rods. Materials and methods: A custom jig was designed to facilitate mounting of a basic two-ring IEF in a hydraulic press. Controlled centre and off-centre (thus simulated bending) axial loading was then applied across the frame. The configurations were loaded up to 4,000 N. The frame deformation was plotted and the data were then analysed and interpreted. Results: Negligible differences were observed between different four- and three-rod configurations as long as the applied force at the loading point (LP) was within the area of support (AOS) created by the rods. The different four-rod constructs were always more stable than the three-rod constructs during bending. Conclusion: There is comparable stiffness between a four-rod and a three-rod IEF construct as long as the LP is within the AOS created by the rods. A four-rod IEF is stiffer than a three-rod IEF in bending. Clinical significance: This study will possibly change some paradigms regarding the planning and application of IEFs by Orthopaedics Traumatologists and Reconstruction Surgeons.


HTML PDF Share
  1. Aronson J, Harp Jr JH. Mechanical considerations in using tensioned wires in a transosseous external fixation system. Clin Orthop Relat Res 1992;280(280):23–29. DOI: 10.1097/00003086-199207000-00005.
  2. Caja VL, Kim W, Larsson S, et al. Comparison of the mechanical performance of three types of external fixators: linear, circular and hybrid. Clini Biomechan 1995;10(8):401–406. DOI: 10.1016/0268-0033(95)00014-3.
  3. Calhoun JH, Li F, Ledbetter BR, et al. Biomechanics of the Ilizarov fixator for fracture fixation. Clin Orthop Relat Res 1992;280(280):15–22. DOI: 10.1097/00003086-199207000-00004.
  4. Davidson A, Mullins M, Goodier D, et al. Ilizarov wire tensioning and holding methods: a biomechanical study. Injury 2003;34(2):151–154. DOI: 10.1016/s0020-1383(02)00045-1.
  5. Fleming B, Paley D, Kristiansen T, et al. A biomechanical analysis of the Ilizarov external fixator. Clin Orthop Relat Res 1989;241(241):95–105. DOI: 10.1097/00003086-198904000-00012.
  6. La Russa V, Skallerud B, Klaksvik J, et al. Reduction in wire tension caused by dynamic loading. An experimental Ilizarov frame study. J Biomech 2011;44(8):1454–1458. DOI: 10.1016/j.jbiomech.2011.03.018.
  7. Podolsky A, Chao EY. Mechanical performance of Ilizarov circular external fixators in comparison with other external fixators. Clin Orthop Relat Res 1993;293(293):61–70. DOI: 10.1097/00003086-199308000-00009.
  8. Roberts CS, Antoci V, Voor MJ. The effect of transfixion wire crossing angle on the stiffness of fine wire external fixation: a biomechanical study. Injury 2005;36(9):1107–1112. DOI: 10.1016/j.injury.2004.08.018.
  9. Spiegelberg B, Parratt T, Dheerendra S, et al. Ilizarov principles of deformity correction. Ann Royal Coll Surg Engl 2010;92(2):101–105. DOI: 10.1308/003588410X12518836439326.
  10. Zhang G. Avoiding the material nonlinearity in an external fixation device. Clinical Biomechanics 2004;19(7):746–750. DOI: 10.1016/j.clinbiomech.2004.04.001.
  11. Calhoun J, Li F, Bauford W, et al. Rigidity of half-pins for the Ilizarov external fixator. Bulletin (Hospital for Joint Diseases (New York, NY)) 1991;52(1):21–26.
  12. Duda G, Kassi J-P, Hoffmann J, et al. Mechanisches verhalten von ilizarov-ringfixateuren einfluss der gestaltparameter auf die steifigkeit und konsequenzen für den klinischen einsatz. Unfallchirurg 2000;103(10):839–845. DOI: 10.1007/s001130050630.
  13. Sarpel Y, Gulsen M, Togrul E, et al. Comparison of mechanical performance among different frame configurations of the Ilizarov external fixator: experimental study. J Trauma: Inj, Infect Crit Care 2005;58(3):546–552. DOI: 10.1097/01.ta.0000152550.48706.a7.
  14. Gessmann J, Jettkant B, Königshausen M, et al. Improved wire stiffness with modified connection bolts in ilizarov external frames: a biomechanical study. Acta Bioeng Biomech 2012;14(4):15–21.
  15. Mullins M, Davidson A, Goodier D, et al. The biomechanics of wire fixation in the Ilizarov system. Injury 2003;34(2):155–157. DOI: 10.1016/s0020-1383(02)00262-0.
  16. Bronson DG, Samchukov ML, Birch JG, et al. Stability of external circular fixation: a multi-variable biomechanical analysis. Clin Biomechans 1998;13(6):441–448. DOI: 10.1016/s0268-0033(98) 00007-2.
  17. Cross AR, Lewis DD, Murphy ST, et al. Effects of ring diameter and wire tension on the axial biomechanics of four-ring circular external skeletal fixator constructs. Am J Vet Res 2001;62(7):1025–1030. DOI: 10.2460/ajvr.2001.62.1025.
  18. Fragomen AT, Rozbruch SR. The mechanics of external fixation. HSS J 2007;3(1):13–29. DOI: 10.1007/s11420-006-9025-0.
  19. Tan B, Shanmugam R, Gunalan R, et al. A biomechanical comparison between Taylor's spatial frame and Ilizarov external fixator. Malays Orthop J 2014;8(2):35–39. DOI: 10.5704/MOJ.1407.012.
  20. Rozbruch SR, Ilizarov S. Limb lengthening and reconstruction surgery. CRC Press; 2006.
  21. Voinescu M, Soares D, Castro M, et al., A study of moments acting on the tibia during gait in the active elderly population. In: ISBS-Conference Proceedings Archive, 2011. vol 1.
  22. Morris AG. Fatter and fatter: South Africa's rise in body mass index. S Afr J Sci 2011;107(3-4):01–01. DOI: 10.4102/sajs.v107i3/4.650.
  23. Perren S. Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Relat Res 1979;138(138):175–196.
  24. Claes LE, Heigele CA, Neidlinger-Wilke C, et al. Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res 1998;355(355 Suppl):S132–S147. DOI: 10.1097/00003086-199810001-00015.
  25. Goodship A, Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures. Bone & Joint Journal 1985;67(4):650–655. DOI: 10.1302/0301-620X.67B4.4030869.
  26. Goodship AE, Cunningham JL, Kenwright J. Strain rate and timing of stimulation in mechanical modulation of fracture healing. Clin Orthop Relat Res 1998;355(355 Suppl):S105–S115. DOI: 10.1097/00003086-199810001-00012.
  27. Jagodzinski M, Krettek C. Effect of mechanical stability on fracture healing—an update. Injury 2007;38(1):S3–S10. DOI: 10.1016/j.injury.2007.02.005.
  28. Harwood PJ, Newman JB, Michael ALR. (ii) An update on fracture healing and non-union. Orthopaedics and Trauma 2010;24(1):9–23. doi: 10.1016/j.mporth.2009.12.004.
  29. Park S-H, O'Connor K, McKellop H, et al. The influence of active shear or compressive motion on fracture-healing. J Bone Joint Surg Am 1998;80(6):868–878. DOI: 10.2106/00004623-199806000- 00011.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.