Strategies in Trauma and Limb Reconstruction

Register      Login

VOLUME 14 , ISSUE 2 ( May-August, 2019 ) > List of Articles

TECHNICAL ARTICLE

All Internal Bone Transport: Use of a Lengthening Nail and Double Plating for Management of Femoral Bone Loss

Jonathan Wright, Peter Bates, Nima Heidari, Alexandros Vris

Keywords : Bone loss, Bone transport, Femur, Lengthening nail

Citation Information : Wright J, Bates P, Heidari N, Vris A. All Internal Bone Transport: Use of a Lengthening Nail and Double Plating for Management of Femoral Bone Loss. 2019; 14 (2):94-101.

DOI: 10.5005/jp-journals-10080-1431

License: CC BY-NC-SA 4.0

Published Online: 01-08-2019

Copyright Statement:  Copyright © 2019; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Background: A variety of techniques for management of segmental femoral bone loss have been described, each with different advantages and challenges during treatment. The development of motorized lengthening nails has provided a potential for all internal bone transport, avoiding some of the difficulties with external fixation in the femur. At present, there is a limited published literature on experiences in this technique. Aim: The development of this technique aimed to overcome the difficulties previously reported for internal bone transport in the femur, particularly varus deformity and joint stiffness. Technique: We describe the technique of double plating with bone transport utilizing a magnetic lengthening nail to manage segmental femoral bone loss. The benefits of the technique are discussed, along with specific challenges and lessons that have been learned through experience of internal bone transport. Conclusion: Use of a magnetic lengthening nail and double plating as a method of all internal bone transport provides an option for the management of massive femoral bone loss, while avoiding some of the challenges that have been reported with the existing techniques. Clinical significance: This technique provides an additional method in the armamentarium of the trauma or limb reconstruction surgeon treating massive femoral bone loss.


PDF Share
  1. Masquelet AC, Begue T. The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am 2010;41(1):27–37. DOI: 10.1016/j.ocl.2009.07.011; table of contents.
  2. Minami A, Kasashima T, Iwasaki N, et al. Vascularised fibular grafts. An experience of 102 patients. J Bone Joint Surg Br 2000;82(7):1022–1025. DOI: 10.1302/0301-620x.82b7.10332.
  3. Davda K, Heidari N, Calder P, et al. ‘Rail and Nail’ bifocal management of atrophic femoral nonunion. Bone Joint J 2018;100-B(5):634–639. DOI: 10.1302/0301-620X.100B5.BJJ-2017-1052.R1.
  4. Pallaro J, Angelliaume A, Dunet B, et al. Reconstruction of femoral bone loss with a monoplane external fixator and bone transport. Orthop Traumatol Surg Res 2015;101(5):583–587. DOI: 10.1016/j.otsr.2015.04.001.
  5. Wan J, Ling L, Zhang XS, et al. Femoral bone transport by a monolateral external fixator with or without the use of intramedullary nail: a single-department retrospective study. Eur J Orthop Surg Traumatol 2013;23(4):457–464. DOI: 10.1007/s00590-012-1008-x.
  6. Iacobellis C, Berizzi A, Aldegheri R. Bone transport using the Ilizarov method: a review of complications in 100 consecutive cases. Strategies Trauma Limb Reconstr 2010;5(1):17–22. DOI: 10.1007/s11751-010-0085-9.
  7. Paley D, Catagni MA, Argnani F, et al. Ilizarov treatment of tibial nonunions with bone loss. Clin Orthop Relat Res 1989(241):146–165. DOI: 10.1097/00003086-198904000-00017.
  8. Napora JK, Weinberg DS, Eagle BA, et al. Hexapod stacked transport for tibial infected nonunions with bone loss: long-term functional outcomes. J Orthop Trauma 2018;32(1):e12–e18. DOI: 10.1097/BOT.0000000000001005.
  9. Maffulli N, Nele U, Matarazzo L. Changes in knee motion following femoral and tibial lengthening using the Ilizarov apparatus: a cohort study. J Orthop Sci 2001;6(4):333–338. DOI: 10.1007/s007760100028.
  10. Landge V, Shabtai L, Gesheff M, et al. Patient satisfaction after limb lengthening with internal and external devices. J Surg Orthop Adv 2015;24(3):174–179. DOI: 10.3113/JSOA.2015.0174.
  11. Simpson AH, Cole AS, Kenwright J. Leg lengthening over an intramedullary nail. J Bone Joint Surg Br 1999;81(6):1041–1045. DOI: 10.1302/0301-620x.81b6.9359.
  12. Rozbruch SR, Kleinman D, Fragomen AT, et al. Limb lengthening and then insertion of an intramedullary nail: a case-matched comparison. Clin Orthop Relat Res 2008;466(12):2923–2932. DOI: 10.1007/s11999-008-0509-8.
  13. Nayagam S, Davis B, Thevendran G, et al. Medial submuscular plating of the femur in a series of Paediatric patients: a useful alternative to standard lateral techniques. Bone Joint J 2014;96-B(1):137–142. DOI: 10.1302/0301-620X.96B1.28691.
  14. Kold S, Christensen KS. Bone transport of the tibia with a motorized intramedullary lengthening nail - a case report. Acta Orthop 2014;85(2):211–213. DOI: 10.3109/17453674.2014.887953.
  15. Barinaga G, Beason AM, Gardner MP. Novel surgical approach to segmental bone transport using a magnetic intramedullary limb lengthening system. J Am Acad Orthop Surg 2018;26(22):e477–e482.DOI: 10.5435/JAAOS-D-17-00487.
  16. Olesen UK, Nygaard T, Prince DE, et al. Plate-assisted bone segment transport with motorized lengthening nails and locking plates: A technique to treat femoral and tibial bone defects. J Am Acad Orthop Surg Glob Res Rev 2019;3(8):e064. DOI: 10.5435/JAAOSGlobal-D-19-00064.
  17. Silk Z, Vris A. Novel method to create a bespoke cement spacer for use in the management of segmental long-bone defects. Ann R Coll Surg Engl 2019;101(7):530–532. DOI: 10.1308/rcsann.2019.0074.
  18. Tetsworth K, Paley D, Sen C, et al. Bone transport versus acute shortening for the management of infected tibial non-unions with bone defects. Injury 2017;48(10):2276–2284. DOI: 10.1016/j. injury.2017.07.018.
  19. Sen C, Demirel M, Saglam Y, et al. Acute shortening versus bone transport for the treatment of infected femur non-unions with bone defects. Injury 2019(11):2075–2083. DOI: 10.1016/j.injury.2019.08.021.
  20. Holm I, Nordsletten L, Steen H, et al. Muscle function after midshaft femoral shortening. A prospective study with a two-year follow-up. J Bone Joint Surg Br 1994;76(1):143–146. DOI: 10.1302/0301-620X.76B1.8300660.
  21. Barker KL, Simpson AH. Recovery of function after closed femoral shortening. J Bone Joint Surg Br 2004;86(8):1182–1186. DOI: 10.1302/0301-620x.86b8.15194.
  22. Baumgart R, Betz A, Schweiberer L. A fully implantable motorized intramedullary nail for limb lengthening and bone transport. Clin Orthop Relat Res 1997(343):135–143. DOI: 10.1097/00003086-199710000-00023.
  23. Calder PR, Laubscher M, Goodier WD. The role of the intramedullary implant in limb lengthening. Injury 2017;48(Suppl 1):S52–S58. DOI: 10.1016/j.injury.2017.04.028.
  24. Guichet JM, Deromedis B, Donnan LT, et al. Gradual femoral lengthening with the albizzia intramedullary nail. J Bone Joint Surg Am 2003;85(5):838–848. DOI: 10.2106/00004623-200305000- 00011.
  25. Kirane YM, Fragomen AT, Rozbruch SR. Precision of the PRECICE internal bone lengthening nail. Clin Orthop Relat Res 2014;472(12):3869–3878. DOI: 10.1007/s11999-014-3575-0.
  26. Schiedel FM, Vogt B, Tretow HL, et al. How precise is the PRECICE compared to the ISKD in intramedullary limb lengthening? Reliability and safety in 26 procedures. Acta Orthop 2014;85(3):293–298. DOI: 10.3109/17453674.2014.913955.
  27. Couto A, Freitas J, Alegrete N, et al. Two consecutive limb lengthening with the same PRECICE nail: a technical note. Strategies Trauma Limb Reconstr 2018;13(3):199–204. DOI: 10.1007/s11751-018-0317-y.
  28. Laubscher M, Mitchell C, Timms A, et al. Outcomes following femoral lengthening: an initial comparison of the Precice intramedullary lengthening nail and the LRS external fixator monorail system. Bone Joint J 2016;98-B(10):1382–1388. DOI: 10.1302/0301-620X.98B10.36643.
  29. Calder PR, McKay JE, Timms AJ, et al. Femoral lengthening using the Precice intramedullary limb-lengthening system: outcome comparison following antegrade and retrograde nails. Bone Joint J 2019;101-B(9):1168–1176. DOI: 10.1302/0301-620X.101B9.BJJ-2018-1271.R1.
  30. Foong B, Panagiotopoulou VC, Hothi HS, et al. Assessment of material loss of retrieved magnetically controlled implants for limb lengthening. Proc Inst Mech Eng H 2018;232(11):1129–1136. DOI: 10.1177/0954411918806329.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.