Citation Information :
Azi ML, Teixeira MB, de Carvalho SF, de Almeida Teixeira AA, Cotias RB. Computed Tomography vs Standard Radiograph in Preoperative Planning of Distal Radius Fractures with Articular Involvement. 2019; 14 (1):15-19.
Introduction: Distal radius fractures with articular involvement are more likely to require surgical management. Treatment decisions are based on parameters which are obtained from plain radiographs. This study aims to determine the differences between computed tomography and standard radiographs in the preoperative planning of distal radius fractures with articular involvement. This was performed by measuring the intraobserver and interobserver reliability between three systems used to interpret the main fracture characteristics and two treatment decisions.
Materials and methods: Forty-three cases of distal radius fractures with articular involvement were included. Fracture displacement was measured using plain radiographic and computed tomography. Five orthopedic surgeons evaluate the images to determine the AO/OTA classification, the articular fragments, the biomechanical columns involved, and recommend a surgical approach and implant for fracture fixation.
Results: An articular step-off was identified in 13 cases (30%) with the standard radiographs and in 22 (51%) cases with the computed tomography (p = 0.00). Interobserver variation for preoperative planning was slight when evaluated using the standard radiographs. Computed tomography improves reliability for AO/OTA classification and articular fragments but not for the biomechanical columns. Intraobserver variation for preoperative planning was slight to moderate for AO/OTA classification and slight to fair for identification of articular fragments and biomechanical columns. With regard to selection of the surgical approach, there was slight to moderate variation and, finally, for fracture fixation it was slight to fair.
Conclusion: Information provided by conventional radiography and computed tomography are sufficiently different as to induce the surgeon to select different treatments for the same fracture.
Court-Brown CM, Caesar B. Epidemiology of adult fractures: a review. Injury 2006;37(8):691–697. DOI: 10.1016/j.injury.2006.04.130.
Chung KC. Trends in the United States in the treatment of distal radial fractures in the elderly. J Bone Joint Surg Am 2009;91(8):1868–1873. DOI: 10.2106/JBJS.H.01297.
Court-Brown CM, Aitken S, Hamilton TW, et al. Nonoperative fracture treatment in the modern era. J Trauma 2010;69(3):699–707. DOI: 10.1097/TA.0b013e3181b57ace.
Flinkkilä T, Sirniö K, Hippi M, et al. Epidemiology and seasonal variation of distal radius fractures in Oulu, Finland. Osteoporos Int 2011;22(8):2307–2312. DOI: 10.1007/s00198-010-1463-3.
Koo KOT, Tan DMK, Chong AKS. Distal radius fractures: an epidemiological review. Orthop Surg 2013;5(3):209–213. DOI: 10.1111/os.12045.
Mackenney PJ, McQueen MM, Elton R. Prediction of instability in distal radial fractures. J Bone Joint Surg Am 2006;88(9):1944–1951. DOI: 10.2106/JBJS.D.02520.
Lichtman DM, Bindra RR, Boyer MI, et al. Treatment of distal radius fractures. J Am Acad Orthop Surg 2010;18(3):180–189. DOI: 10.5435/00124635-201003000-00007.
Katz MA, Beredjiklian PK, Bozentka DJ, et al. Computed tomography scanning of intra-articular distal radius fractures: does it influence treatment? J Hand Surg Am 2001;26(3):415–421. DOI: 10.1053/jhsu.2001.22930a.
Catalano III LW, Barron OA, Glickel SZ. Assessment of articular displacement of distal radius fractures. Clin Orthop Relat Res 2004;423:79–84. DOI: 10.1097/01.blo.0000132884.51311.28.
Harness NG, Ring D, Zurakowski D, et al. The influence of three-dimensional computed tomography reconstructions on the characterization and treatment of distal radial fractures. J Bone Joint Surg Am 2006;88(6):1315–1323. DOI: 10.2106/JBJS.E.00686.
Kleinlugtenbelt YV, Madden K, Groen SR, et al. Can experienced surgeons predict the additional value of a CT scan in patients with displaced intra-articular distal radius fractures? Strategies Trauma Limb Reconstr 2017;12(2):91–97. DOI: 10.1007/s11751-017-0283-9.
Medoff RJ. Essential radiographic evaluation for distal radius fractures. Hand Clin 2005;21(3):279–288. DOI: 10.1016/j.hcl.2005.02.008.
Cole RJ, Bindra RR, Evanoff BA, et al. Radiographic evaluation of osseous displacement following intra-articular fractures of the distal radius: reliability of plain radiography vs computed tomography. J Hand Surg Am 1997;22(5):792–800. DOI: 10.1016/S0363-5023(97)80071-8.
Marsh JL, Slongo TF, Agel J, et al. Fracture and dislocation classification compendium - 2007: Orthopaedic Trauma Association classification, database and outcomes committee. J Orthop Trauma 2007; 21(10 Suppl):S1–S133. DOI: 10.1097/00005131-200711101-00001.
Melone CP. Distal radius fractures: patterns of articular fragmentation. Orthop Clin North Am 1993;24(2):239–253.
Rikli DA, Regazzoni P. Fractures of the distal end of the radius treated by internal fixation and early function. A preliminary report of 20 cases. J Bone Joint Surg Br 1996;78(4):588–592. DOI: 10.1302/0301-620X.78B4.0780588.
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33(1):159–174. DOI: 10.2307/2529310.
Lafontaine M, Hardy D, Delince P. Stability assessment of distal radius fractures. Injury 1989;20(4):208–210. DOI: 10.1016/0020-1383(89)90113-7.
de Oliveira Filho OM, Belangero WD, Teles JB. Distal radius fractures: consistency of the classifications. Rev Assoc Med Bras (1992) 2004;50(1):55–61. DOI: 10.1590/S0104-42302004000100036.
McCallister WV, Smith JM, Knight J, et al. A cadaver model to evaluate the accuracy and reproducibility of plain radiograph step and gap measurements for intra-articular fracture of the distal radius. J Hand Surg Am 2004;29(5):841–847. DOI: 10.1016/j.jhsa.2004.04.019.
Suojärvi N, Sillat T, Lindfors N, et al. Radiographical measurements fordistal intra-articular fractures of the radius using plain radiographs and conebeam computed tomography images. Skeletal Radiol 2015;44(12):1769–1775. DOI: 10.1007/s00256-015-2231-4.
Schneppendahl J, Windolf J, Kaufmann RA. Distal radius fractures: current concepts. J Hand Surg Am 2012;37(8):1718–1725. DOI: 10.1016/j.jhsa.2012.06.001.
Liporace FA, Adams MR, Capo JT, et al. Distal radius fractures. J Orthop Trauma 2009;23(10):739–748. DOI: 10.1097/BOT.0b013e3181ba46d3.
de Muinck Keizer RJO, Lechner KM, Mulders MAM, et al. Three-dimensional virtual planning of corrective osteotomies of distal radius malunions: a systematic review and meta-analysis. Strategies Trauma Limb Reconstr 2017;12(2):77–89. DOI: 10.1007/s11751-017-0284-8.
Yunes Filho PRM, Pereira Filho MV, Gomes FCP, et al. Classifying radius fractures with X-ray and tomography imaging. Acta Ortop Bras 2009;17(2):9–13. DOI: 10.1590/S1413-78522009000200001.
Plant CE, Hickson C, Hedley H, et al. Is it time to revisit the AO classification of fractures of the distal radius? Inter- and intra-observer reliability of the AO classification. Bone Joint J 2015;97-B(6):818–823. DOI: 10.1302/0301-620X.97B6.33844.
Kleinlugtenbelt YV, Groen SR, Ham SJ, et al. Classification systems for distal radius fractures. Acta Orthop 2017;88(6):681–687. DOI: 10.1080/17453674.2017.1338066.
Goldwyn E, Pensy R, O'Toole RV, et al. Do traction radiographs of distal radial fractures influence fracture characterization and treatment? J Bone Joint Surg Am 2012;94(22):2055–2062. DOI: 10.2106/JBJS.J.01207.
Avery III DM, Matullo KS. Distal radial traction radiographs: interobserver and intraobserver reliability compared with computed tomography. J Bone Joint Surg Am 2014;96(7):582–588. DOI: 10.2106/JBJS.M.00134.
das Graças Nascimento V, da Costa AC, Falcochio DF, et al. Computed tomography's influence on the classifications and treatment of the distal radius fractures. Hand (N Y) 2015;10(4):663–669. DOI: 10.1007/s11552-015-9773-8.