Strategies in Trauma and Limb Reconstruction

Register      Login

VOLUME 14 , ISSUE 1 ( January-April, 2019 ) > List of Articles

Original Article

Management of Infected Nonunion of the Forearm by the Masquelet Technique

Shabir A Dhar, Tahir A Dar, Naseer A Mir

Keywords : Bone grafting, Infected nonunion, Masquelet technique

Citation Information : Dhar SA, Dar TA, Mir NA. Management of Infected Nonunion of the Forearm by the Masquelet Technique. 2019; 14 (1):1-5.

DOI: 10.5005/jp-journals-10080-1411

License: CC BY-NC-SA 4.0

Published Online: 01-04-2014

Copyright Statement:  Copyright © 2019; The Author(s).


Abstract

Purpose: Infected nonunion of the forearm bones is a challenge for the orthopedic surgeon on several fronts. The forearm itself is unique as the difficulties include the relation between restoration of shaft length with the anatomy and long-term functional outcome of adjacent joints, and the risk of elbow and wrist stiffness related to prolonged immobilization. The problem of infection is complex due to the presence of bone necrosis, segmental bone loss, sinus tract formation, fracture instability, and scar adhesion of the soft tissues. The ideal management method for these situations is still debated. Materials and methods: We used the two-stage-induced membrane technique devised by Alain Masquelet for the management of these infected nonunion of 12 forearm bones. Results: All 12 bones united uneventfully. The bones united in a period ranging from 6 to 12 months with a mean of 7.8 months. Conclusion: Our results show that this technique addresses several of the challenges pertinent to the forearm nonunion simultaneously and results are uniformly predictable.


HTML PDF Share
  1. Rochard MJ, Ruch DS, et al. 3rd: Malunions and nonunions of the forearm. Hand Clin 2007;23:235–243. DOI: 10.1016/j.hcl.2007.02.005.
  2. Richards RR. Chronic disorders of the forearm. J Bone Joint Surg Am 1996;78(6):916–930. DOI: 10.2106/00004623-199606000-00017.
  3. Schemitsch EH, Richards RR. The effects of malunion on functional outcome after plate fixation of fractures of both bones of the forearm in adults. J Bone Joint Surg Am 1992;74:1068–1078. DOI: 10.2106/00004623-199274070-00014.
  4. Hollister AM, Gellman H, et al. The relationship of the interosseous membrane to the axis of rotation of the forearm. Clin Orthop Relat Res 1994;298:272–276. DOI: 10.1097/00003086-199401000-00036.
  5. Skahen JR, Palmer AK, et al. The interosseous membrane of the forearm: anatomy and function. J Hand Surg Am 1997;22:981–985. DOI: 10.1016/S0363-5023(97)80036-6.
  6. Tarr RR, Garfinkel AI, et al. The effects of angular and rotational deformities of both bones of the forearm. J Bone Joint Surg Am 1984;66:65–70. DOI: 10.2106/00004623-198466010-00010.
  7. Prasarn ML, Ouellette EA, et al. Infected nonunions of diaphyseal fractures of the forearm. Arch Orthop Trauma Surg 2010;130(7): 867–873. DOI: 10.1007/s00402-009-1016-4.
  8. Ring D, Allende C, et al. Ununited diapyseal forearm fractures with segmental defects: plate fixation and autogenous cancellous bone-grafting. J Bone Joint Surg Am 2004;86(11):2440–2445. DOI: 10.2106/00004623-200411000-00013.
  9. Ziran NM, Smith WR. The ‘Ziran’ wrap: reconstruction of critical-sized long bone defects using a fascial autograft and reamer-irrigator-aspirator autograft. Patient Saf Surg 2014;8:40. DOI: 10.1186/s13037-014-0040-7.
  10. Masquelet AC, Fitoussi F, et al. Reconstruction of the long bones by the induced membrane and spongy autograft. Ann Plast Surg 2000;45(3):346–353.
  11. Masquelet AC, Begue T. The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am 2010;41(1):27–37. DOI: 10.1016/j.ocl.2009.07.011.
  12. Kloen P, Buijze GA, et al. Management of forearm nonunions: current concepts. Strat Traum Limb Recon 2012;7:1–11. DOI: 10.1007/s11751-011-0125-0.
  13. dos Reis FB, Faloppa F, et al. Outcome of diaphyseal forearm fracture-nonunions treated by autologous bone grafting and compression plating. Ann Surg Innov Res 2009;3:5. DOI: 10.1186/1750-1164-3-5.
  14. Hosny G, Shawky MS. The treatment of infected non union of the tibia by compression-distraction techniques using the ilizarov external fixator. Int orthop 1998;22:298–302. DOI: 10.1007/s002640050264.
  15. Garcia-Cimbrelo E, Marti-Gonzalez JC. Circular external fixation in tibial non unions. Clin Orthop 2004;419:65–70. DOI: 10.1097/00003086-200402000-00011.
  16. Rigal S, Merloz P, et al. Bone transport techniques in post traumatic bone defects. Orthop Traumatol Surg Res 2012;98:103–108. DOI: 10.1016/j.otsr.2011.11.002.
  17. Street DM. Intramedullary forearm nailing. Clin Orthop Relat Res 1986;212:219–230. DOI: 10.1097/00003086-198611000-00023.
  18. Weiland AJ, Phillips TW, et al. Bone grafts: a radiologic, histologic, and biomechanical model comparing autografts, allografts, and free vascularized bone grafts. Plast Reconstr Surg 1984;74(3):368–379. DOI: 10.1097/00006534-198409000-00006.
  19. Mack GR, Lichtman DM, et al. Fibular autografts for distal defects of the radius. J Hand Surg Am 1979;4(6):576–583. DOI: 10.1016/S0363-5023(79)80011-8.
  20. Wei SY, Born CT, et al. Diaphyseal forearm fractures treated with and without bone graft. J Trauma 1999;46(6):1045–1048. DOI: 10.1097/00005373-199906000-00011.
  21. Dhar SA, Mir MR, et al. Acute peg in hole docking in the management of infected non-union of long bones. Int Orthop 2008 Aug;32(4): 559–66. DOI: 10.1007/s00264-007-0353-6.
  22. Hertel R, Gerber A, et al. Cancellous bone graft for skeletal reconstruction: muscular vs periosteal bed—preliminary report. Injury 1994;25 Suppl 1:A59–A70.
  23. Pelissier P, Masquelet AC, et al. Induced membranes secrete growth factors including vascular and osteoconductive factors and could stimulate bone regeneration. J Orthop Res 2004;22(1):73–79. DOI: 10.1016/S0736-0266(03)00165-7.
  24. Gugala Z, Lindsey RW, et al. New approaches in the treatment of critical-size segmental defects in long bones. Macromol Symp 2007;253:147–161. DOI: 10.1002/masy.200750722.
  25. Apard T, Bigorre N, et al. Two stage reconstruction of the posttraumatic tibia bone loss with nailing. Orthop Traumatol Surg Res 2010;96:549–553. DOI: 10.1016/j.otsr.2010.02.010.
  26. Stafford PR, Norris BL. Reamer irrigator aspirator bone graft and bi Masquelet technique for segmental bone defect non union; a review of 25 cases. Injury 2010;41 Suppl 2:72–77. DOI: 10.1016/S0020-1383(10)70014-0.
  27. Karger C, Kishi T, et al. Treatment of posttraumatic bone defects by the induced membrane technique. Orthop Traumatol Surg Res 2012;98:97–102. DOI: 10.1016/j.otsr.2011.11.001.
  28. Giannoudis PV, Dinopoulos H, et al. Bone substitutes: an update. Injury 2005;36 Suppl 3:S20–S27. DOI: 10.1016/j.injury.2005.07.029.
  29. Govender SM, Csimma CRM, et al. The Bmp-2 Evaluation In Surgery For Tibial Trauma Study G (2002) Recombinant Human Bone Morphogenetic Protein-2 For Treatment Of Open Tibial Fractures: A Prospective, Controlled, Randomized Study Of Four Hundred And Fifty Patients. J Bone Jt Surg Am Vol 2002;84(12):2123–2134. DOI: 10.2106/00004623-200212000-00001.
  30. Geiger F, Lorenz H, et al. VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute. Bone 2007;41:516–522. DOI: 10.1016/j.bone.2007.06.018.
  31. Christou C, Oliver RA, et al. The Masquelet Technique for Membrane Induction and the Healing of Ovine Critical Sized Segmental Defects. PLoS One 2014;9(12):e114122. DOI: 10.1371/journal.pone.0114122.
  32. Luo TD. Management of recalcitrant osteomyelitis and segmental bone loss of the forearm with the Masquelet technique. J Hand Surg Eur Vol 2016 May 26.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.